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Graspable Math: Towards Dynamic Algebra
Notations that Support Learners Better than Paper

Abstract—Pen and paper remain the preferred tools for
solving mathematical problems – despite the fact that paper
derivations are very challenging to master and are limited by
the static nature of paper. While traditional computer algebra
systems are not geared towards the need of learners, dynamic
algebra notation systems (DANS) that bring derivations into the
digital space without sacrificing the user agency and directness
that paper derivations provide have much to contribute to mathe-
matics education. In this paper, we first analyze the strengths and
weaknesses of pen and paper for doing algebraic derivations and
discuss the potential benefits of DANS. We then present Graspable
Math, our own implementation of such a system, discuss the
interface design challenges solved in its development, and report
on the encouraging outcomes of two user studies.

Keywords—e-learning; dynamic notation systems; algebra; in-
teractive mathematics; mathematics education

I. INTRODUCTION

Formal mathematical notations such as algebra present a
basic conundrum for mathematics teaching and learning. On
the one hand they are tremendously powerful in the hands of
experts and gate careers and innovation in STEM. On the other
hand, students mostly get frustration out of them and only 33%
of 8th graders and 25% of 12th grade students in the United
States reach proficiency in mathematics (NCES, 2015). Our
research is focused on the role of technology and interfaces
that mathematical reasoners use to work with algebra notation.
For most people today, this interface is pen and paper. We
believe there is great potential in designing e-learning tools
with new interfaces that go beyond the capabilities of paper
in supporting learning and teaching in mathematics. We are
presenting one such tool, called Graspable Math, in this paper.

Many of our thinking and communication tools have been
transformed by computers, including mathematic tools. We can
neatly typeset equations with formula editors and systems like
LaTeX, automatize long or complex derivations with powerful
computer algebra systems (CAS) like Mathematica or Maple,
and provide immediate feedback to students by checking the
answers to their math homework with e-learning systems
like ASSISTments, to name just a few. However, when it
comes to learning how to manipulate algebraic expressions
though, existing CAS are of limited use. Math users, from
middle school students learning basic mathematical concepts to
professional mathematicians discovering new theorems, often
prefer traditional paper over these systems and they do so for
good reasons.

A. Traditional Paper

User agency, flexibility, and directness are among the
unique advantages of paper for mathematical derivations [1].

Paper maintains user agency in that at each point in transform-
ing a mathematical expression, one chooses among different
paths by deciding on the next step, promoting in-depth under-
standing and insights. Paper is flexible in that one can write or
draw any form of representation in any level of detail and rigor,
as well as easily annotate content with notes and supporting
material. In addition, paper provides a direct user interface
in that the mapping between one’s actions (writing) and the
results (scribbles on the paper) are directly apparent.

It is the simple and static nature of paper that leads to these
advantages. However, the same simplicity does not provide
a good match to the intrinsically complex nature of most
mathematical domains and makes learning difficult. Because
any expression can be written after any other, the user of paper
is tasked with maintaining mathematical integrity by avoiding
syntactic and conceptual errors. To avoid these errors on paper
is hard, since one has to simultaneously accomplish a number
of challenging tasks such as copying information reliably
from one place to another without making transcription errors,
correctly applying mathematical transformations to appropriate
subexpressions of a potentially complex and deeply structured
expression, as well as finding and correcting errors through
repeated checking. These low-level skills must be highly
trained before students can focus on high-level mathematical
aspects of algebra problems.

Another less obvious problem with paper is that it does
not capture the fundamentally dynamic nature of algebraic
transformations. Paper is poorly matched to people’s concep-
tion of proofs, which often involve continuous, visuospatial
transformations of complex symbol structures [2]–[4]; these
transformations are difficult to express in a static medium like
paper. Consider the short derivation

3(x+ y) = 3y

3x+ 3y = 3y

3x = 0.

One could simply consider the application of steps as rewriting
rules: the assertion that 3(x+y) = 3y licenses the assertion that
3x + 3y = 3y. However, people typically think of this much
more narratively: we ‘move’ the 3 into the parenthesis; the 3y
on the left and right side of the equal ‘cancel’. Understanding
proofs as narratives requires a user of paper to map the
structures in one line into those of another, re-identifying
common elements.

B. Dynamic Algebra Notation Systems

How can e-learning tools retain the user agency, flexibility,
and directness that make paper derivations so useful, while
providing more structure and feedback to support learners?
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We believe that a particularly promising approach is to use
dynamic computer algebra systems that allow users to perform
step-by-step derivations and allow interacting directly with the
mathematical expression that is transformed.

There are several recently developed systems that focus di-
rect manipulation interfaces for creating mathematical proofs,
in particular SetPad, Hands-on Math, MST, and MathPad2 [5]–
[8]. All these systems allow the user to hand-write formulas on
the screen and to manipulate them using gestures, while (with
the exception of MST) automatically ensuring mathematical
consistency. Hands-on Math and MathPad2 seek to provide
an intuitive interface for existing classical computer algebra
systems and allow users to connect several representations with
each other. SetPad, Hands-on-Math and MST facilitate step-by-
step derivations through gestures in their domains of set theory,
algebra and algorithmic proofs, respectively. Other systems,
such as the iPad applications DragonBox, AlgebraTouch, and
FromHere2There [9]–[12], use the interface metaphor of alge-
braic terms as physical objects. Terms can be picked up and
moved by the user to trigger mathematical transformations and
smoothly move to their new locations after the transformation.

Moving derivations into the digital space allows going be-
yond what is possible with paper in many ways. For example,
derivations can be automatically recorded as students create
them and can then be easily shared with other students or
teachers. Dynamic algebra notation systems can provide imme-
diate feedback on potential errors and support users in applying
individual transformations to create a save space in which
even novices can explore and play with algebraic expressions.
Additionally, digital derivations can be automatically annotated
to highlight connections between lines and support insights.

In order to further explore the potential of dynamic algebra
notations, we decided to develop our own system. One reason
behind this is that most of the existing systems were limited
to a particular device, a narrow domain, or are not readily
available to the public. We wanted a system that is easy to
access for learners, teachers, and researchers, can be used
across different devices, and can be integrated into existing
e-learning tools. Another reason was that, while each of the
existing systems has its particular strengths, such as the smooth
interactions of DragonBox, or the expressiveness and power
of MST and Hands-on-Math, we felt there was no system that
combined them in a way to be competitive to pen and paper
for learners.

II. THE GRASPABLE MATH SYSTEM

Graspable Math is a web-based dynamic algebra notation
system with a focus on a consistent, efficient and powerful user
interface for manipulating algebraic expressions. Currently,
GM covers the contents of middle school algebra and sup-
ports direct, in-place interactions with the algebraic terms via
touch or mouse gestures. GM currently supports real numbers,
variables, signed expressions, brackets, fractions and nested
fractions, equations, inequalities, power expressions, absolute
values, as well as a big library of transformations (actions) on
those expression types.

The development of GM was guided by the concept of
direct manipulation interfaces [13] and their advantages in
terms of ease of learning and use. We focused on developing

a consistent gesture language in which individual math trans-
formations are triggered by dragging the involved terms to the
place they should end up after the intended transformation.
For example, distribution is triggered by dragging a factor
into a sum. GM consistently uses the metaphor of physical
objects for algebraic chunks in its interface. It visualizes
transformations as smooth transitions between states, providing
visual continuity of all terms, which allows users to visually
track how terms move while an expression is transformed
into another. A considerable body of research emphasizes the
importance of such perceptual aspects of learning setups even
in abstract domains like algebra [4], [14].

To support insights in the connections between terms, GM
allows inspection of derivations by recording and organizing
them in lines and using colored highlighting to show how a
term transforms across the lines. The GM workspace combines
these features with the affordances of a classical whiteboard,
so that users can make flexible annotations. Finally, GM is
implemented as a web application that can be used on any
device with a modern web browser and can be integrated into
existing web-based e-learning tools and platforms.

We describe some of GM’s central features and design
decisions in more detail below. Many of those decisions were
made in response to user studies.

A. Gestures and Animations

All gestures for transforming an expression act directly on
the terms that are involved in the transformation. Whenever
the user picks up a term, GM creates a set of target areas, one
for each action that can be performed in the given context.
When the term is dragged on top of one of the target areas,
the respective action is triggered; the specific trajectory to the
target area is irrelevant. This design keeps the gesture language
that users have to learn simple – in most cases a gesture simply
involves dragging a term to the place it should move in the
intended transformation. Figure 1 shows the gesture used for
distributing a factor into a sum. When the user picks up the
factor and drags it towards the sum, the system automatically
performs the distribution once the factor overlaps with the sum,
which is the target area of the distribution action. All terms
transition smoothly to their new locations. The user can now
either drop the factors to finish the interaction or keep moving
the factors out of the sum to revert the distribution.

Fig. 1: Distribution in GM. The user picks up the x (A) and
drags it into the brackets which triggers the distribution (B).
The expression is updated in-place to reflect the result of the
distribution. The user can now either finish the gesture now
(D) or after dragging the selected xes out of the sum to factor
them (C,E).

There are two types of interactions for performing actions
on algebra expressions in GM, dragging and tapping. Some of
the actions that can be triggered through tapping are adding
numbers, fractions and like terms, multiplying numbers and
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variables, simplifying signs, dividing numbers, raising sums
or numbers to a power, or swapping the sides of an equation.
Dragging can be used to commute terms, move terms across
the equal sign, factor and distribute with sums, products, and
power expressions, move terms in and out of fractions, cancel
fractions, as well as to perform substitutions. Additionally,
dragging numerical addends or factors on top of each other will
combine them. We refer to this gesture as number smooshing
or simply smooshing (see Figure 2).

Fig. 2: Number smooshing in GM. The user has picked up the
left-most addend “3” and drags it on top of the “4” (A). This
combines both addends, showing the result as a shadow, while
the addends are still visible in a smaller font and arranged
on a circle. Dragging on top of further addends combines
these, too (B). The smooshing interaction allows to perform
multiple operations in a single gesture, instead of requiring
several clicks or taps (C).

A powerful feature of Graspable Math is action chaining.
This allows the user to trigger a sequence of transformations
through a single, uninterrupted gesture. Since all gestures and
transformations provide immediate, in-place visual feedback,
the user can continuously drag terms to perform multiple steps
without lifting the finger, allowing for efficient interactions.
See Figure 3 for an example. This feature was directly mo-
tivated by early user surveys: In previous versions, executing
simple operations such as addition was done by tapping the
operation sign (as in Algebra Touch), and in these versions a
single action was performed with each mouse click. Early users
were frustrated that they could not take ‘shortcuts’ (for in-
stance, combining 2x+5+3x+7 by simultaneously regrouping
and adding like terms), that they seemed to calculate internally
during traditional problem solving. As a result, participants
uniformly felt that these instantiations of GM had the opposite
of our intended effect, relative to paper, shifting focus from
high-level tactical and structural considerations and onto low-
level rearrangements. In the words of one of these participants,
it was a ‘click fest’. It was in response to these concerns that
we introduced smooshing and action chaining.

We support multi-touch, single-touch, or mouse interac-
tions in GM. One reason behind this that although multi-
touch gestures are very expressive, they are not available
on many widely used devices. Another reason is that from
our experience, people often prefer single-touch gestures over
multi-touch gestures, especially if the exact positioning of the
fingers is required. Therefore, for each multi-touch interaction,
there is also an alternative single-touch gesture (which may
involve a keyboard). For example, picking up several terms
at once can be done by placing two fingers around them, by
shift-clicking to select the terms, or by pressing the space bar
after selecting a term.

Fig. 3: Action chaining in GM. The equation on the left can
be solved with a single, continuous mouse gesture, which is
shown in red. At the right are the states the the expression
goes through while the user performs the gesture. All changes
happen in-place during the gesture and unpack into separate
steps after the interaction is finished. Smart reselection of
terms after each action and having most actions be triggerable
through dragging allows for long action chains like this.

B. Workspace

The workspace acts like a whiteboard and holds derivations
and drawings the user made. Users can start a new derivation
by bringing up an on-screen keyboard and entering the first
line of the derivation. Once a derivation is created, it can
be moved around freely and manipulated on the workspace.
The possibility to freely draw or write on the workspace
allows users to annotate algebraic expressions (see Figure 4).
Besides the students themselves making annotations, teachers
and tutors can use this feature to provide written feedback to
students in an online course.

Fig. 4: GM Workspace. The user can create, manipulate and
rearrange algebraic derivations on the workspace, as well as
freely draw to annotate such derivations.

C. Mathematical Narratives

GM automatically records the lines of a derivation list
and the terms in them are connected to each other through
the transformations that were performed. This allows GM to
visualize how terms map onto each other. The user can switch
to “inspect mode” and tap on any term in a derivation to see
its path through the derivation (see Figure 5 for an example).
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All terms in previous lines that directly influenced and all
terms in following lines that resulted from the selected term are
highlighted. This feature aids the user in getting an overview
of the big “themes” or “motives” in a mathematical narrative.

Fig. 5: Term Mappings in GM. This derivation of the x-
coordinate of an intersection of two lines is annotated with
a visualization of which terms turned into the selected 3
in the denominator. The user can select any term to see a
visualization of how this term ‘moved’ through the derivation.

To tell a consistent mathematical story, it is often necessary
to combine some of the smaller steps that were taken into
meaningful packages. In Graspable Math, the user can do this
by picking up lines and moving them up on top of previous
lines (see Figure 6). Pulling a line down reveals the hidden
lines below it. This interaction is modeled after the metaphor
of a set of connected paper cards – one for each derivation line
– that can be stacked on top of each other. The visualization
of term mappings works across stacked lines.

Fig. 6: Stacking lines in a derivation. The user can collapse
several lines in a derivation by dragging one line on top of the
lines above it. Pulling the line down reverts the collapsing.

D. Design Challenges and Solutions

1) In-Place Manipulation: Direct and in-place manipula-
tion of the math expression via dragging of terms provides
many advantages and sets GM apart from most of the sys-
tems we reviewed. Supporting in-place manipulation comes,
however, with a set of challenges. First, changing the very
expression a user is currently working on can be disorienting,
and second, the result of an interaction might be hard to predict
for the user when the same expression is used to reflect the
updated state and as the object to trigger changes on.

In Graspable Math, we tackle the former point by using
smooth animations that provide continuous transitions of the
initial terms and their positions to the new ones. Terms don’t
disappear and reappear, but instead move from the original
to their final positions. We provide an additional measure to
facilitate visual understanding of transformations: GM delays
some of the automatic simplifications like removing brackets

after distribution to after the user finished the interaction (see
step D in Figure 1). This allows us to temporarily separate
part of the complexity of the transition. Additionally, it makes
undoing of an action by dragging terms back to their old
position easier, as fewer structural changes are performed
before the user commits to the action.

In order to help the user see what an expression will be
when the user finished the current gesture, we show a gray
outline of the dragged term at the position it will move to
when it is dropped (see Figure 1). We refer to this as term
shadow or short shadow.

2) Efficient Action Sequences: When people do algebra on
paper, they typically take mental shortcuts or combine several
steps before writing down the next line. One way to make
an interactive algebra system scale with the skills of a user
and provide the same feeling of flow without sacrificing the
step-by-step control is to make the process of triggering a
series of transformations as smooth and effortless as possible.
One central concept in GM is the chaining of transformations
within a single dragging interaction. Since transformations are
performed in-place and during the dragging, it is often possible
to continue to drag after a completed transformation without
interrupting the gesture. The challenges in designing such an
action chaining system is that the system has to, first, make
intelligent decisions which terms to select for dragging after
a transformation was done. Second, most actions must be
triggerable through dragging, and third, the interaction might
suffer from involuntary triggering of further actions when the
terms in an expression – and the associated target boxed –
move after a transformation.

In GM, we use the mapping of old to new terms that
is defined by each transformation to select the terms that
are being dragged in after a transformation was applied. For
example, after moving the x in x(2 + 3) into the brackets,
the new state becomes (2x+ 3x) with the the two x’es being
automatically selected for further dragging. (See Figure 1).

In order to allow for long action chains, most actions
including canceling in fractions, rewriting equations and fac-
toring can be triggered by dragging. We recently added the
functionality of adding and multiplying numbers via dragging
them on top of each other – or “smooshing” them. Figure 3
provides an example of an equation that can be solved with a
single, continuous dragging gesture.

Finally, avoiding the unintended triggering of follow up
actions right after an action was done is a tricky problem.
This is because the underlying structure and positions of all
terms can change dramatically between steps and with them the
target areas that trigger the actions. If after a transformation, all
terms in an expression are moved to their correct new locations
and the position of the dragged terms is kept fully under user
control, it is possible that the dragged terms overlap with a
new target area, triggering the next action immediately and
without user intent.

There are at least three approaches to resolve this unin-
tended action triggering, yet all of them have different trade-
offs. One option is to carefully choose where to place target
boxes and to add situation-specific rules to avoid the immediate
triggering. We tried this approach with mixed success, and
found that it often breaks down in novel situations or when we
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added new gestures or capabilities. A second option and gen-
eral solution is to reposition all terms relative to the dragged
terms, instead of moving them to their actual new positions
after a transformation. Since it is typically the horizontal
rearrangement of terms that causes triggering problems, the
application of relative repositioning can be limited to the
horizontal positions. The downside to this solution is that the
horizontal position of the whole math expression now slightly
changes during a gesture and moves back to its correct absolute
position only at the end of each interaction. For most use-
cases this does not have a negative impact though, and we
are currently using this approach with good success. A third
option is to move all terms to their correct new positions, and
to instead adjust the position of the dragged terms. We found
that this option interferes with the user experience of holding
and moving terms, since dragged terms might not follow the
users movements at the moment a math action is triggered.

3) Visualizing Term Connections: Visualizing the path an
algebraic term takes through a derivation requires knowledge
about the connection of terms between every pair of consec-
utive lines in the derivation. In GM, we define the mapping
of each previous term onto a set of new terms for each of
the available transformations. A term might be mapped onto
several, as is the case in distribution, it might be mapped to
a single term as is the case in commuting terms and it might
be mapped onto an empty set, as is the case when removing
optional brackets.

When automatically combining several transformations or
when displaying term mappings across hidden derivation lines,
we compose the term mappings of several actions to arrive at
a mapping that spans several transformation steps.

4) Learning Curve: With any new system, users require
training and practice to use it efficiently. To help new users
learn how to use GM quickly, we designed an interactive
gesture tutorial that walks the user through the gestures for
transforming expressions. For each available gesture, the tuto-
rial combines short videos of how to apply the gesture with
an area that lets the user perform the gesture on the same
example as in the video. Once the video has finished, we
provide further assistance by making the term that the user
should pick up wiggle. It currently takes about ten minutes
to work through the tutorial. Although of course it takes
longer to fully acclimate to the interface, in our experience
users have little trouble remembering and using the basic
gestures after this short tutorial. The tutorial is available at
http://graspablemath.com/tutorial and works best in Chrome.

III. USER STUDIES

User studies played a formative role in the iterative devel-
opment of GM. We describe two studies in which we collected
feedback to guide development and tested the feasibility of the
system as an alternative to paper derivations. For these studies,
we emphasized the procedure of solving linear equations in one
variable. We selected this task because it is a standard problem
in high school mathematics and science, and is reflective of
many routine tasks outside of these domains. Furthermore, our
belief is that any replacement for paper must be at least as
convenient as paper. Therefore, fluid, accurate equation solving
forms a reasonable baseline domain on which to evaluate a
computer algebra system.

A. Pilot Study

We first report the results of a small pilot study of the
usability of the system, conducted in early April, 2015, with
a heterogeneous population of 14 individuals. Participants
included 11 members of the psychological research lab of the
second author (1 faculty member, 3 post-docs, 1 graduate stu-
dent, 2 former undergraduates and 4 current undergraduates).
Of these, 4 had substantial experience with the system, either
as users or as programmers; the remaining 7 had minimal
exposure to the system.

1) Material: Equations A1 through B3 present the full set
of problems used in the main pilot activity. These problems
were designed to be reasonably complex and challenging, and
to explore several features of Graspable Math, without pre-
senting so many features that new users would be completely
overwhelmed. The subjects had the task to solve the following
two sets of equations using pen & paper for one half and GM
for the other.

2+4x
5 = 8x

5 + 6x (A1)

5y + 3z
z + 6y = 2+4y

5 + 3y+7
5 (A2)

5(3+2x)
8x + 7 = 16

4 + 9 (A3)

7b
3 + 6

5 = b+ 4b
8 (B1)

4x+ 3y
y − 4x = 4x+ 5x+2

4 + 12x+4
5 (B2)

6(4x+2)
2x + 5 = 20

5 + 10 (B3)

2) Procedure: The pilot study was intended to explore us-
ability of the system for users with varying levels of expertise.
We recognized that, as with any new interface, users would
require instruction and practice in GM. Therefore, the pilot
study began with a brief (roughly 15 minutes) instructional
session on basic interactions. During this session, an exper-
imenter showed each of several basic actions to the subject,
first through a prepared video illustrating a single action, then
by observing the subject attempt the action themselves. The
actions illustrated were commutativity, moving terms across
equations, distribution and factoring, selecting multiple terms,
manipulating fractions, executing operations by smooshing and
tapping, and chaining actions together.

After basic interactions, the experimenter led the partic-
ipant through the solution of three complex problems, com-
parable to those in the main experiment. The goal of this
training was to help the user understand features of the system
in context, to practice recall of basic operations, and to remind
subjects of the underlying mathematics and the strategies
involved in solving equations.

After this training, participants solved problems A1 through
B3. All participants solved set A before set B. However, for
half the participants, set A was solved using GM and set B
was solved with paper and pencil; for the other participants,
set A was solved on paper and set B with GM. These problems
were timed, and evaluated for successful solutions. Participants
were encouraged to ask for help using the GM system during
this time, but no help was provided on the appropriate mathe-
matical strategy. Participants were also encouraged to discuss
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experiences, problems, frustrations, or observations during the
study. This primarily occurred during use of GM, naturally,
which may have increased the time and working memory load
associated with the system.

After completing all six problems, participants were given a
short questionnaire that asked about their thoughts and feelings
on the system. They were also asked to report whether they
thought they would prefer, in the future, solving problems like
this in GM or on paper. In addition, verbal interviews were
conducted in which participants were encouraged to reflect on
their experiences, and describe strengths and limitations of the
system.

3) Quantitative Results: As expected, participants made
many errors in the lengthy derivations. On paper, partici-
pants successfully completed 57% of the problems. Although
this may seem low, these problems were fairly complicated,
requiring a large number of steps. Also, participants were
not heavily motivated to check their answers (though many
did at least some checking); undergraduate participants who
lacked advanced mathematical training struggled particularly
with these problems. As predicted, nearly all errors among
all participants were either transcription errors, sign errors,
or malformed transformations. In GM, 100% of problems
were solved correctly, reflecting the fact that GM prevents
trivial errors, and that subjects had some understanding of
high level strategy. It should be noted that this 100% accuracy
was reached despite the fact that subjects were allowed to
give up on problems without completing them and that bad
solution strategies in GM can lead to increasingly complex
expressions. In previous iterations of pilot tests, accuracy with
prototype versions of the system has been well below 100%.
Solution strategies were broadly similar inside GM and on
paper, suggesting that we are achieving our goal of creating
a digital environment which supports algebraic reasoning by
helping skilled users avoid simple errors.

The problems came in pairs (e.g., A1 and B1). A participant
solved one of the problems in the pair on paper, and the other
in GM. Response times were included only for problems in
which a participant got both problems in the pair correct.
Participants solved problems accurately at an average rate of
85 seconds per problem (range: 20–320 seconds). Participants
were slightly faster using GM (Mean = 72s) than on paper
(Mean = 98s), but the difference was not significant by a
standard within-participants t-test (t(10) = 0.85, p ∼ 0.4). We
regard this non-difference as an achievement, though by no
means an endpoint. Remember that people have had extensive
practice using paper, while for most participants our system
was quite new. Previous iterations of the system had, under
similar testing conditions, been substantially slower to use than
paper. It may seem intuitive that the calculator functionality
of GM was responsible for its ease of use, but this does not
match our observation. In part this is because the problems
did not involve very difficult calculations, meaning that most
participants could easily do the required arithmetic in their
heads.

B. Qualitative Responses

Overall, participants reported satisfaction with the general
gestural interface. Most gestures were regarded as natural and

easy to remember. At the same time, they reported some
difficulty actually implementing these gestures, in particular
for gestures related to fractions. Many of the same partici-
pants struggled to manipulate fractions on paper, so some of
their experienced difficulty may have come from the system
violating their erroneous expectations. Another difficulty lay in
the need to precisely place terms in desired locations. Finally,
participants expected some gestures and transformations to
work which we had not considered in our implementation.
Based on this feedback we adjusted the target areas for fraction
actions to make them easier to trigger and added several new
fraction actions.

A second observation was that while action chaining clearly
improved experiences of fluidity, it had unintended side effects.
In the version of GM used in this study, action chaining
used the first repositioning method described earlier, moving
the equation to its new position while keeping the dragged
terms at their place. This meant that often after one action
the mouse would be positioned over a new object, and so a
new, unintended action would trigger automatically. After the
study, we changed the repositioning strategy and were able to
completely avoid this unintended side effect.

One aspect of the system that surprised participants was
that some complex actions could lead to large transformations.
For instance, moving the x+1 in 4

x+1 +2+3y = 9 across the
equals sign triggered a shortcut in which x + 1 is multiplied
and distributed to both sides, yielding 4+2(x+1)+3y(x+1)+
9(x+ 1). The secondary (x+ 1) factors on the left, from the
user’s perspective, silently appear for no clear visual reason.
This kind of action confused many users, while satisfying the
strongest users. In part, this can be addressed by providing
better visual clues to indicate where the additional terms come
from. More generally, it suggests the need to adjust to the needs
of a user.

A common frustration of users were the ‘alt’ and ‘shift’
methods of picking up large chunks. In an expression like
5x = 2x+ 1, participants would frequently intend to pick up
the 2x by selecting either the 2 or the x; this would only select
one term. Participants wanted a system that could better read
their intentions, selecting just the elements they wanted. In
response to this frustration, we implemented a “rubber band
selection mechanism” that allows users to select additional
terms by dragging the currently selected term further away.
Nevertheless, selecting groups of terms remains one of the
aspects of GM novice users struggle with.

Among the aspects participants liked about the system, they
particularly emphasized the value of ‘shadows’ indicating the
final state of the current transformation, and the general fluidity
of the transformations. Most participants reported that they
would want to use the system again, and that they preferred
it over pen and paper for the purpose of solving complex
equations.

On the basis of the pilot study, several bugs were fixed,
several new gestures were added and existing ones were made
more consistent and coherent. In our second user study which
we describe next, we brought this improved but largely similar
system into a classroom of middle school students. Although
the changes were minor, we expected a substantial change in
the user experience due to the increased fluidity and reliability
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of the next iteration of the system.

C. Middle School Study

One of our primary goals is understanding how dynamic
algebra systems like GM can be leveraged in educational
settings. We brought the revised system to a group of 48
middle school students participating in a summer math/science
enrichment program at a small liberal arts college in a mid-
Atlantic city. Participants had no prior experience with our
system, in any iteration. Students were drawn from a number
of urban middle schools, and were entering either 7th (n = 23)
or 8th (n = 25) grade. Students applied for entry into the
program, and all students were required to be in the top
quarter of their regular-year classes in order to participate.
Prior to participation in the study, participants had about 1
month of daily exposure to mathematical operations as part
of the program, including (for the 8th grade group only) a
particular focus on linear equations. Throughout the summer
enrichment program, students were divided by grade into
separate classrooms.

The students participated in a full-day intervention using
GM, beginning with a short tutorial and algebra warm-up using
both paper and pencil and GM. After the warm-up, students
worked in a modified version of the program combining
equations and linear graphs; they then completed a final round
of the warm-up activity. Because the algebraic manipulations
component is the focus of this paper, we report the results of
the algebra warm-up portion of the activity only.

1) Materials: The warm-up activity was modeled after the
pilot study, with modifications to make it successful in a
classroom context. First, each student was given a laptop with
an instance of GM, along with a random identification number
(which permitted anonymous participation). Then, each student
followed along as an experimenter illustrated the use of the
program by stepping through a slightly revised version of
the tutorial. The experimenter presented on the overhead, and
the students followed along on their computers. During the
tutorial session, several other experimenters moved around the
classroom helping individual students as needed.

10

b− 9
=
−5
b− 6

(C1)

19c− 16c = 15 (C2)
10

b− 9
=
−5
b− 6

(C3)

4 + 5(a+ 7) = 4 (C4)

4 + 2q = 8q − 8 (C5)

The main activity was presented as a race: the class was
divided into two teams (Red and Blue) based on a random
assignment of teams to identification numbers made prior to
the study. One group was assigned as the GM group, the other
as the paper and pencil group, and were told that they would
have 15 minutes to complete as many problems (accurately) as
possible, from a set of 20 total problems. These problems were
similar to those in the pilot study, but were substantially easier.
Equations C1 to C4 illustrate a small sample of problems from
the first iteration.

The student interface was setup as shown in Figure 7 and
presented problems one at a time, in an identical format. In
both groups, all students were required to type in their final
answer, and were given feedback about whether their answer
was correct or incorrect1. If their answer was correct, the
problem turned green, their personal score incremented by 1
on their screen, and a group score (presented on the overhead
projector, and maintained by an active server connection which
was also used to log result data) incremented by one. If
the answer was wrong, the problem disappeared and was
replaced by the next problem in the set. Students could also
press a ‘skip’ button, with results identical to an incorrect
answer. When all problems were attempted or skipped, the
program began representing problems which had previously
been incorrectly attempted. The only difference between the
two teams was that while the GM team saw problems presented
as dynamic equations, the paper and pencil team was shown
visually identical but inert equations (but were naturally pro-
vided with paper and pencil). Both groups were encouraged to
enter answers as soon as they knew them – that is, neither had
to fully complete the problem within the provided interaction
system. Once the first 15 minute competition was up, there
was a planned ‘rematch’ with the same teams, but reversed
conditions.

Fig. 7: The interface students used during the warm up activity,
which was setup as a race between two teams. In the GM
condition, the central math expression could be manipulated,
while in the pen and paper condition it was inert.

This activity proved highly motivating. Most students were
excited to compete, and were boisterous during the activity –
there was substantial cheering, for instance, when one team
took a large lead. This may have affected the extremity of
the results we found. That is, as one team perceived itself
to be losing, they may have worked less hard. It is worth
noting, however, that in other studies students often become
bored and ‘drop out’. In the current study, only one student
stopped participating from the group of 48, suggesting that
the race format may have higher fidelity as an indicator of
interface usability. Overall, we believe this to have been a
highly successful method for translating interface testing into
a middle-school classroom.

2) Quantitative Results: Because there were 20 problems
to be solved, and a limited amount of time, the main dependent

1A variety of forms was accepted. For instance, for the equation 3x+2 =
11, any of 3, x = 3, and 3 = x were accepted.
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measure was the total number of problems solved correctly
over the 15 minutes. A secondary measure was the proportion
of submitted solutions which were correct – this is of course
a practically important measure for most problem solving and
testing contexts.

Figure 8 summarizes the results. For each of total solutions
and accuracy rate, a 2 (grade level) x 2 (GM or PP) x 2
(order counterbalance) ANOVA was conducted. This analysis
revealed that older participants achieved more correct solutions
(M(8th) = 7.8; M(7th)=4.2; F(1, 46)=29, p < 0.001, d=1.15),
and that participants using GM achieved more correct solutions
(M(GM)=7.3, M(PP)=4.5, F(1,46)=46, p < 0.001, d=0.82). No
interactions or order effects reached significance.

Fig. 8: Mean number of problems correctly solved in 15
minutes in the middle school usability test, collapsing across
order. Error bars indicate within-bin 95% confidence interval.
Because the tests were conducted within-participant, error bars
do not indicate statistical significance.

Not only did students solve about 62% more of the
problems within the time limit using GM, each individual
answer was more likely to be correct (students could submit
several answers to get a problem right). As shown in Figure
9, solutions submitted by older participants were more likely
to be correct (25% vs. 45%, F(1,46)=34, p < 0.001, Cohen’s
d=0.94); so were problems solved by students using GM (45%
vs. 24%, F(1,46)=38, p < 0.001, Cohen’s d=0.91). In this
case, there was also a significant 2-way interaction, such that
students in the advanced classroom did much worse on paper-
and-pencil problems after using GM, possibly as a result of
discouragement in the competition as they perceived them-
selves to be losing (F(1,46)=12, p=0.001). This interpretation
is compatible with comments made by the students during the
competition, and with the fact that many of the error responses
in this category seem to reflect random typing rather than
sincere solution attempts.

It is worth noting that the error rate using the tool is
still very high: fully 50% of answers entered after using GM
were incorrect. A full error analysis is beyond the scope
of this article, but errors seemed to come from three major
sources. First, some students simply did not understand the
nature of the mathematical tasks of equation solution and
simplification: students often answered simplification problems

Fig. 9: Mean error rate across all problem submissions in the
middle school usability test, collapsing across order. Error bars
indicate within-bin 95% confidence interval. Because the tests
were conducted within-participant, error bars do not indicate
statistical significance.

with a solved equation, e.g., answering x = 6 to 8 + 2x + 4,
or with incomplete solutions, such as responding 4f = 16 for
2f − 10 + 2f = 6. Second, although calculation failures were
less common in GM that on paper, they were not rare in GM:
students frequently solved the problem only partially in the
system, and made an apparent error afterward. For instance,
one student turned 4 + 5(a+ 7) = 4 into 5 ∗ a = −35 inside
GM, but then answered a = −6. Finally, about 2% of the
errors resulted from an unfortunate decimal rounding bug in
GM that we discovered during the study.

3) Qualitative Results: Students were initially extremely
skeptical of the GM interface. In both classrooms, when the
teams were initially assigned conditions before the first race,
the GM teams audibly groaned and complained. Clearly, in
their view this new interface would be more difficult, more
frustrating, and, most important to them perhaps, likely to lead
to slower and more error-prone solutions. In both groups, these
attitudes quickly changed. Interestingly, they did not change
immediately: in the 8th grade classroom (in which the results
of the first race were quite close), for instance, both groups
vocally estimated that the ‘advantage’ lay with the paper and
pencil group. It was not until a few minutes into the race
that people started making vocal comments about the newly
perceived advantages of the GM group. By the end, essentially
all students were enthusiastic about the new system.

In our revisions, we tried to increase the mathematical
fluidity of the system by incorporating suggestions from our
earlier pilot subjects. Reports from students suggested that
these changes were largely successful. Overall, participants
felt very positively about smooshing and chaining, and did
not feel that the system limited their ability to take shortcuts.
Most participants reported that they were able to take shortcuts
as effectively in GM (over this domain) as on paper. However,
some participants now reported a converse problem: the system
could take several actions in a row, very quickly. Sometimes,
these were so fast the user could not follow them, and did
not feel that they had initiated the actions. In the extreme, this
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led to a lack of ‘trust’ that the system was behaving correctly,
and a lack of confidence in their own understanding of what
was happening. These observations led us to adjust how some
of GM’s math actions are triggered. Instead of performing an
action immediately when the dragged term enters its target
area, the action is only triggered if the user holds the term
there for a short while. This solution still allows for convenient
action chaining, while avoiding many situations of unintended
action triggering.

D. Discussion

We found that working with dynamic algebra systems can
have interesting implications for how we think about math and
mathematical reasoning. We want to give two examples here.
The first is a consequence of mentally interpreting algebraic
terms as objects or using direct manipulations interfaces to
interact with them. In doing this, we turn something our brain
is bad at, applying arbitrary abstract rules, into something
that our brain is good at, recognizing patterns, modeling
simple dynamics of the world, and manipulating objects in
the environment [15]. Seen from this perspective, the typi-
cal distinction between “abstract” formal notations and the
“concrete” situations that they might model breaks down.
Instead, mathematical notation, without relating to any external
situation, is both abstract and concrete in itself.

The second example is about the way dynamic algebra
systems can impact students’ understanding of what algebra is
actually about. In the middle school study, one of the students
articulated that “It [GM] does the math for you – you don’t
have to think at all!”. Apparently, this student considered the
part that GM assisted with, the correct application of low-level
rules, to be all that algebra is about. In fact, even with GM the
problems were quite challenging for the students, and feedback
from several of them indicated that their attention was shifted
towards high-level and strategy considerations.

IV. CONCLUSION

Many students struggle with algebraic notation and tradi-
tional computer algebra systems are not geared towards the
needs of learners. In this paper we argued for the promise
of dynamic algebra notation systems that retain the strengths
of paper derivations while providing additional support and
structure to learners.

We presented Graspable Math (GM) as one example of
such a system and discussed several design decisions that con-
tributed to developing it into a usable, desirable system. GM
uses a direct manipulation interface for algebra derivations,
allows efficient chaining of actions, can trace terms through
derivations, and has a workspace that lets the user construct,
annotate, and connect expressions. At this point, our user stud-
ies suggest that we have built a system that many users enjoy
using, at least for one class of formal derivations, and which
protects them from errors while allowing a speed, fluency and
user-agency comparable to paper and pencil derivations.

We believe that dynamic algebra notation systems (DANS)
like Graspable Math will have a big impact on math education
and e-learning tools. DANS can allow novices to explore and
play with algebra expressions in a way that on paper is only
possible for experts. They can supplement traditional paper

as a learning tool, and shift the focus from correctly apply-
ing individual rules to high-level and strategy considerations.
DANS can allow teachers to explore a record of student work,
in contrast to many existing learning systems that provide
teachers with the final answers only. Finally, for researchers
DANS provides a new way to record, visualize, and analyze
rich data about students mathematical thinking and process –
something that few technology tools can do at scale.

So far, little research has been done on the effects of
dynamic algebra notation systems on learners and teachers. We
hope that Graspable Math can help in advancing such research.
We based the Graspable Math system on web technology to
make it easy to access for learners, educators, and researchers,
as well as easy to integrate into existing web-based e-learning
systems. We are excited about the future of dynamic algebra
notation systems, and the impact they will have on how we
learn, teach, reason about, and share math!
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