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Abstract 

Perceptual tools such as telescopes allow the application of 
robust internal perceptual systems to apply beyond the range 
of their unadorned capacity. This paper explores how 
reasoning over culturally provided representations enables the 
perception of conceptually distant structures. In particular, 
this paper examines the behavior of typical adults estimating 
the position of large numbers (1 thousand to 1 billion) on a 
number line. Participants—even those who closely match 
linear placement—show discontinuities in placement in the 
immediate vicinity of 1 million. This pattern was predicted by 
a theoretical account in which linear behavior across many 
orders of magnitude is achieved through highly linear patterns 
of placement on smaller lines that are recycled and scaled to 
larger numerosities.  Just as the telescope allows perception of 
the imperceptibly distant, reasoning processes over the natural 
numbers appear to allow intrinsically limited magnitude-
perception systems to apply (with distortion) to much larger 
scales. 
 
Keywords: mathematical cognition, concepts, high-level 
reasoning, numerical cognition 

Introduction  
Much reasoning in mathematics involves taking structures 

well-defined in particular concrete domains and extending 
them to new less accessible contexts. For example, 
exponents are often presented initially to learners as 
repeated multiplications: x2=x*x. This idea is then extended 
to zero exponents, fractional and real exponents, and even 
complex-valued exponents.  This paper focuses on a very 
elementary instance of the extension from the concrete to 
the abstract: the extension of the natural numbers beyond 
the feasibly countable range. Mathematics often deals with 
numbers far outside any normal experience.  For instance, 
currently the largest known prime number (the 48th 
Mersenne prime) would contain 17,425,170 digits if written 
as an Arabic numeral.  

It is easy enough to order these numbers from smallest to 
largest; it is much, much harder to have any sense of their 
actual size. Nor is their actual size of any importance, 
except for practical reasons of computation. Almost 
exclusively, when magnitude is important for very large 
numbers, it is in comparison to other numbers related by 
some thread of reasoning in the same problem.  

In this paper, we examine much more prosaic “big 
numbers”: those numbers just beyond the limit of practical 
countability—in the range of about 10^6-10^12. These 
numbers fall into an important boundary: so large that 

experiences of this many individual items are vanishingly 
rare, but small enough to play important roles in sciences 
such as geology, astronomy, and macroeconomics, and in 
political contexts such as budget discussions. There is little 
reason to think that evolution would have specially prepared 
us to deal with quantities of this magnitude. How do we 
come to access them, and take advantage of their properties? 

Representations that Contribute to Quantity 
For small numbers, it appears that matching numbers to 

magnitudes requires the coordination of several systems.  
For instance, small exact set sizes may result from the active 
coordination of memorized count lists, pointing procedures, 
and a perceptual system that responds selectively to 
numerosity (Feigenson, Dehaene, & Spelke, 2004; Carey, 
2009). Although exact numbers over 20 are typically not 
well linked to perceived set sizes (Izard & Dehaene, 2008; 
Sullivan & Barner, 2012) the linearity of the metric scale of 
the numbers extends out much further (Siegler & Opfer, 
2003). Still, at some point even a log-based neural scale 
must run out. We simply cannot have lognormal response 
nodes that span the natural numbers, since our brains are 
finite in size, nor can we have created the entirety of the 
natural numbers through a completed infinity of recursions.  
Furthermore, typical environments do not require the 
individuation of sets as large as 10^9 (1 billion).  How do 
we deal with these quantities when we do encounter them?   

One possibility is that we induce new tokens as needed 
throughout life, extending a process essentially identical to 
that used to induce numbers small enough to encounter 
frequently (Leslie, Gelman, and Gallistel, 2009; Gelman, 
2011). We might call this the domain continuity hypothesis. 
Numbers in the range of 10^9 might be recursively 
generated through successorship. On this account, our 
cognitive systems do not represent a completed infinity, but 
represent the natural numbers through unbounded 
extensibility. A plausible but (to our knowledge) novel 
hypothesis is that a lognormal representation system could 
be extended to include large numbers, as needed, by the 
creation of new, log-normally responsive tokens with some 
spacing. Representing the entirety of numbers up to 10^12 
this way requires less than 100 times the resources required 
to get from 2-3. While we cannot hope to construct a 
representation of a large Mersenne prime this way, we 
might well deal with large government deficits using the 
same log-normally distributed quantity representations that 
seem to be shared across many other species. Alternatively, 



to the degree that linear representation schemes and 
logarithmic internal resources are combined to form linear 
number representations for smaller numbers (Carey, 2009; 
Thompson & Opfer, 2010), a plausible domain continuity 
hypothesis might extend this process to larger numbers, 
extending linear behavior out to any desired range.   

Alternatively, it might be that when numbers exceed some 
endogenous or exogenous boundary, the manner in which 
neural resources are coopted to capture magnitude 
qualitatively shifts from a more-or-less direct one-step 
mapping from the metric structure of quantities or number 
words into spatial layout, to a more complex strategy. That 
is, people may reason about how to line up number words 
and number lines. Landy, Goldin, and Silbert (2013) found 
evidence for such mediated reasoning processes in the 
behavior of college-aged adults and adults recruited online. 
On a number-line placement task with boundaries of 1 
thousand and 1 billion, about 40% of participants placed 
marks in a ‘piecewise linear’ pattern: the position of 1 
million was very wrong (about 37% from the left edge of 
the page), but numbers between 1 million and 1 billion were 
placed extremely linearly, as were numbers between 1 
thousand and 1 million. Note that on this task, also used in 
the current article, the correct linear location of 1 million is 
quite far to the left.  Because there are 1 thousand millions 
in 1 billion, the location of 1 million lies about one 
thousandth of the way from one thousand to one billion.  

One interpretation is that the “piecewise linear” 
participants were successfully applying their understanding 
of linearity over the two sub-ranges and simply adjoining 
the two line segments to yield a combined mapping1, with 
the millions range slightly larger than the thousands. We 
will call this a reuse hypothesis (Anderson, 2010), since the 
resources normally used to process small numbers are 
rearranged and recycled (rather than extended) to handle 
numbers outside their typical domain. 

Behavioral Predictions 
The central theoretical question here concerns the 

proportion of participants who respond nearly linearly on 
larger number lines.  How do they achieve this accuracy? 
There are two clear possibilities: one is that people continue 
the process of constructing linear magnitude representations 
that is used to construct representations of smaller range. On 
the other hand, it may be that people shift strategies, and 
that linearity is achieved through the deliberate cooption and 
reuse of pre-existing processes.  

If linearity is achieved through strategic deployment of 
small-number resources, then linear-like behavior is, like 
piecewise behavior, achieved through the use of two lines: 

                                                             
1 Several minor points are worth noting: Nearly all participants 

in these populations can correctly model the relevant number 
words as numerals, and vice versa. In Landy et al 2013, results 
were similar when all stimulus numbers were over 1 million, 
suggesting that these patterns are not a result of particular stimulus 
distributions. Analogous results obtained when the endpoints were 
1 and 1 billion instead of 1 thousand and 1 billion. 

Table 1. Stimuli used in the Experiment 
Number Range Stimuli Used 
Thousands 10, 60, 100, 150, 230, 250, 310, 380, 

420, 480, 500, 580, 640, 680, 720, 780, 
840, 890, 940, 950 

Millions 1, 2, 3, 4, 60, 100, 150, 230, 250, 310, 
380, 420, 480, 500, 580, 640, 680, 720, 
780, 840, 890, 940, 950 

 
one for numbers under, and one for numbers over 1 million 
(more generally, the theory posits one line for each number 
range involved in the task). This strategy raises a 
coordination problem not present in other versions of this 
task: the right end of the ‘thousands’ line must be aligned 
with the ‘left’ end of the millions line.  The four panels of 
Figure 1 indicate possible outcomes. The left panel indicates 
truly linear behavior. Note however that the x-axis has been 
scaled quite unusually. We have highlighted behavior 
around 1 million by placing 1 million at the middle of the x-
axis, and scaling the rest of the axis linearly. This allows the 
examination of the theoretical predictions more easily than 
log-scaling the axes, since this way the predictions involve 
straight-line behaviors. In the leftmost panel of Figure 1, the 
location of 1 million has been correctly placed by the 
hypothetical participant very close to the left hand edge; 
judgments are linear for smaller and larger numbers. 

The next three panels show varying kinds of 
discontinuity. The second panel indicates the kind of 
behavior reported by Landy et al (2013): a single fixed 
‘million’ location, with linear behavior left and right of it.  
The right two panels illustrate the coordination problem 
mentioned above: if two separate lines are adjoined to 
accomplish the task, then there is no reason the left edge of 
one should align with the right edge of the other. There 
might be a gap (third panel) or overlap (rightmost panel). 

These two theoretical accounts can be discriminated by 
examining closely the boundary around 1 million. On the 
domain continuity hypothesis, performance should be very 
close to linear, and any strong deviations are likely to be 
symmetric and continuous, roughly fitting power-law or 
linear performance (Barth & Paladino, 2011; Opfer, Siegler, 
& Young, 2011).  On the reuse hypothesis, although 
performance in the aggregate may be linear for some 
participants, both the linear and non-linear responders 
should show evidence of ‘joining’ their lines: there should 
be discontinuities in placement behavior in the vicinity of 1 
million. On this account, participants must first make a 
judgment about which line a particular item belongs on—
whether the element is smaller or larger than 1 million. 
After this, they place the mark appropriately relative to the 
endpoints of the selected line segment. If so, linear 
responders might still have a ‘cut’ in the line at one million, 
but know where the cut goes. One very simple version of 
this would be to simply use two lines with the left endpoint 
of both simply treated as 0.  This would cause an overlap, 
but on a line from 1,000 to 1 billion the deviation from 
linearity for the stimuli used would be less than one percent. 



 
Figure 1: Possible response patterns on the number line placement task.  Unlike the number line shown to participants, 

which showed 1 thousand and 1 billion without showing 1 million, the x-axis here is scaled to place 1 million at the center, 
and linearly scale on each side, which facilitates detection of discontinuity at 1 million. The left panel indicates truly linear 
behavior. The next panel indicates continuous placement with 1 million shifted to the right of its normative position.  The two 
right hand panels illustrate two possible discontinuities. The rightmost panel indicates a non-monotonicity, in which some 
numbers in the thousands are placed to the right of some numbers over 1 million. 

 
Experiment 

Method 
Participants. 200 participants were recruited from 
Amazon’s Mechanical Turk (MTurk). MTurk is an online 
marketplace in which participants volunteer to complete 
typically short online tasks in exchange for typically slight 
compensation. This task took about 20 minutes to complete. 
In general, participants recruited from MTurk have been 
found to behave similarly to other participants on a range of 
cognitive tasks when experiments are carefully conducted 
(Crump, McDonnell, & Gureckis, 2013), and have been 
extensively used as subject populations in prior work. 

Design. Instructions showed an image of a small line 
(labeled from 0-8), and indicated the placement of ‘6’ as a 
sample. Participants were informed that the endpoints would 
be larger than in the sample.  

Participants were then shown a number line with “1 
thousand” under the left end, and “1 billion” under the 
other.  Because the study took place on Mechanical Turk, 
the physical length of the stimulus line cannot be 
determined. Participants were sequentially presented 
numbers in a random order, and selected with the mouse 
their chosen location for each number. Participants made 
182 number line placements. Stimulus numbers were 
selected to sample the ranges under 1 million and over 1 
million roughly evenly. Twenty numbers under 1 million, 
and twenty numbers above it, were chosen to be integers 
with one or two significant non-zero digits, and to be close 
to uniformly spaced within the two subranges. Because the 
numbers in the vicinity of 1 million were of particular 
interest, the range just over 1 million was over-sampled: the 
exact numbers 1 million 2 million, 3 million, and 4 million 
were also included. Landy et al, (2013) found little shift in 
participant behavior in response to adjustments of the range 
of stimuli; the same was expected here. 

The experiment started with 10 warm-up trials, with 
distinct stimuli in the same range as the test stimuli. Each 
stimulus was estimated 4 times by each participant; 
judgments were untimed and separated into blocks of 43 
unique stimuli. Because of variations in screen size, a line 
with a fixed small number of pixels was used. The stimuli 
presented in the test phase are presented in Table 1. 

Because the effect of number representation is of interest 
here, format was manipulated between participants: 100 
participants received numerals, such as “54,000,000”; the 
other 100 received hybrid notation stimuli, as in “54 
million”. The two stimulus types essentially serve as 
independent samples to validate conclusions. Results 
indicate that there were no noticeable differences between 
formats, so they are collapsed here. 

Analysis 
Data were analyzed in several steps.  First, large “order of 
magnitude” errors were culled. Second, people were 
individually classified into linear and piecewise groups; 
these groups were further subdivided to isolate groups of 
highly linear responders. Finally, each individual’s 
responses were separately fitted to behavioral models using 
a maximum-likelihood procedure, and the models were 
compared using a likelihood ratio test to find the best-fitting 
model. 
Culling of Order Errors. Several responses were highly 
compatible with the idea that the participant mis-encoded 
the order of magnitude, e.g., by reading “thousand” for 
“million” and vice versa. A two-step process was used to 
prune these data: first a piecewise linear model was fitted to 
the data for each subject (see below). Then, if a data point 
fit the predicted position for an order of magnitude error 
better than it fit the predicted position for the actual 
stimulus, it was removed from analysis. Then, the models 
were refit to the pruned data. This cleaning process made 

left

right

1 million

True Linear

1 million

Continuous Piecewise

1 million

Discontinuous with Gap

1 million

Discontinuous with Overlap



the results more precise, but affected none of the 
conclusions reached here. 
Categorization of Participants. Participants were divided 
into four groups. The first partition was based on whether 
the participant responses best fit into the linear or the 
piecewise cluster (a threshold of 0.3 for the estimated 
million point was used as a rough partition). Participant 
responses were very well fit by either the linear or piecewise 
linear patterns; however, these responses were distributed 
bimodally, with one cluster of participants behaving 
relatively linearly, and a second broader cluster centered 
around 0.4 (40% of the way from the left-hand endpoint) 
(Landy et al, 2013). Because we are here interested in the 
behavior of especially highly linear people, we further 
divided each of these groups by a median split, leaving one 
cluster with “million points” of less than 0.05, another with 
million points between 0.05 and 0.3, a third between 0.3 and 
0.48, and a final group with million points above 0.48. 
Other partitions resulted in identical patterns.  
Individual Model Fitting. To detect whether participant 
responses were continuous and smooth at the location of 1 
million, we initially fit three models to each participant. The 
first was a simple linear regression (the true linear model): 
the endpoints were allowed to deviate from the extreme left 
and right, so this model had two free parameters. The data 
were also fitted by a piecewise linear model with a point 
discontinuity in its slope at 1 million (continuous 
piecewise), and by a model with a discontinuity in both 
slope and value (discontinuous): in this model, the location 
of ‘1 million’ depended on whether it was treated as the 
upper bound of the thousands or the lower bound of the 
millions. In each case, a normal response model was used 
for simplicity. Response models were fit by a maximum 
likelihood method, using the R function optim (R 
Development Core Team, 2008), and compared using a 
likelihood ratio test. 

Results 
Figure 2 presents mean participant responses, as well as 

deviations away from the best fitting piecewise linear 
model. A clear pattern of slope discontinuity can be 
observed in the figure, starting in the vicinity of 1 million. 
Indeed, for 75% of participants, the fully discontinuous 
model improved the fit of the true linear and piecewise 
linear models (α = 0.05, using a χ2 likelihood ratio test for 
nested models); an additional 13% were better fit by the 
piecewise than the true linear model. These patterns held for 
the most linear participants: of those in the first quartile, the 
fully discontinuous model provided the best fit for 73%, 
while 6% of fits were improved by the piecewise model). 

Given that systematic discontinuities in placement 
occurred around 1 million, it is interesting to explore how 
participants located the million point. For each participant, 

the discontinuous model was used to generate two locations 
for 1 million: one generated from numbers under one 
million, and one from numbers over 1 million. The results 
are shown in Figure 3. As in Landy et al (2013), two 
clusters of participants can be seen: one group places 1 
million far to the left; the other exhibits a broader 
distribution, but places 1 million roughly 40% of the way 
across the line. Here, however, we can further see strong 
systematicity in the discontinuity pattern: non-linear 
participants systematically leave a large “gap” between the 
thousand and million scales; very linear participants show 
slight but meaningful overlap. A simple test applied to the 
four groups (binned, recall, on the mean 1 million location) 
finds that all four significantly deviate from point-continuity 
(Most Linear 95% CI=[-0.025, -0.012; More Linear CI = [-
0.018, -0.002], More Segmented CI = [0.017, 0.078]; Most 
Linear CI = [0.085, 0.15]); the more linear two quartiles 
show a significant overlap, while the less linear groups 
show a significant gap. The data are consistent with the idea 
that the most linear participants treat the left hand edge of 
the line as both “1 million” and as “1 thousand”—a simple 
strategy that would lead to overlapping lines, but also high 
accuracy. 

Discussion 
We often speak as though natural number is a singular 
concept, and as though the processing of aligning number 
names with implicit magnitude and individuation 
representations—gives us access to the entire structure. 
Here we have argued that not only does such an alignment 
come over long developmental stretches, it is never fully 
completed. Larger numbers whose magnitude can be 
successfully mapped onto a line are not mapped through a 
process of systematically integrating into a common linear 
scale. Instead, it seems that both linear and non-linear 
responders on the task share a common approach consisting 
of dividing the scale into culturally given multiplicative 
regions, and applying linear responses over those subscales. 
These subscales must then be coordinated with each other to 
approximate a single line. 

Empirically, two novel observations support this 
interpretation: (1) discontinuities in the derivative of the 
response, located at 1 million, for all groups of participants, 
and (2) systematic patterns of location discontinuity, 
shifting from a positive discontinuity or ‘gap’ for non-linear 
responders, to a small but significant overlap for highly 
linear responders. These patterns replicated with both hybrid 
and numeric stimuli, suggesting that they result from 
participants’ numerical reasoning and their construal of the 
task. 

Although the multiple overlapping lines account does 
predict point and slope discontinuities near 1 million, it does 
not predict the very salient pattern in those discontinuities:

 
 



 
Figure 2: (Left) Mean responses by stimulus condition, binned into groups. Error bars are standard errors around the 

within-group mean. (Right) Mean residual bias (response-prediction) for the piecewise linear model with a single slope 
discontinuity at 1 million.  For both panels, the x-axis is piecewise linear (see text description). 

 
overlap for the most linear participants, and large gaps—
about ten to twenty percent of the total line—for the least 
linear. Moreover, these results contradict Landy et al., 2013, 
who found a singular ‘million point’ with a mean of around 
0.35-0.4 for non-linear participants. The current modeling 
approach—which unlike previous approaches allows for a 
discontinuity at one million—finds two locations for 1 
million, one of which is near 0.5 for the segmented groups. 
The gap between the end of the thousands and the beginning 
of the millions identified for the segmented groups may be 
inferred from the fact that the millions range typically starts 
very close to the midpoint (see Figure 3): participants may 
integrate a tendency to align the millions scale with a 
visually salient location (the midpoint) with a realization 
that the millions cover a ‘larger’ range of numbers than the 
thousands do—leading to a compressed thousand scale.   

It may be tempting to note that the task participants were 
asked to perform was unreasonable—putting half the marks 
within a pixel of the left-hand end of the line, and thus to 
dismiss the observed patterns as ‘task demands’. Such an 
explanation would overlook the nature of the experimental 
situation. Participants are always asked to engage in 
particular, usually unusual behaviors. The ways people 
grapple with task requirements are informative about the 
resources available to them (Stenning & Van Lambalgen, 
2008). In this case, it appears people can construct “small” 
linear ranges of around 3 orders of magnitude; beyond that, 
people make use of culturally available and visually salient 
reference points. Furthermore, while the pattern of 
discontinuity was quite similar between very linear and very 
non-linear responders, the perceived task demands shift 
considerably; for the non-linear responders, it is not 

necessary to “pack” a large number of items near the edge. 
Finally, if as proposed here number representations in the 
near large range are constructed through processes of 
reasoning, it makes sense that they would be task-specific in 
character. Although on number line estimation, the multiple-
overlapping-lines system seems to dominate when numbers 
have very different magnitude, it may well be that on other 
tasks, other approaches are used. 

Even for natural numbers just barely beyond the range of 
common experience, rather than directly extending core 
conceptual tools, people engage in processes of constructive 
perception (Landy & Goldstone, 2005; Goldstone & Landy 
2010): they coopt existing perceptual analyzers (Carey, 
2009) that work well to form linear mappings of smaller 
number ranges (not accurate numerosity counts), and 
compose and iterate them to create new number ranges, 
much in the same manner as external notation systems such 
as power towers or Knuth up-arrow notation do. We have 
found that 1 million is a location for a discontinuity (of 
course, it may not be the only or even the smallest such 
boundary)—it might have been the case that familiarity or 
psychophysical factors created a boundary in strategy at any 
arbitrary number. The observed pattern suggests that people 
use the culturally provided numeral system to select 
appropriate magnitudes at which to begin recycling 
cognitive resources. 

Telescopes provide an apt metaphor for these cognitive 
tools: they extend the natural bounds of perception by 
connecting them to new contents while also distorting those 
contents.  For example, understanding the magnitude of 2 
billion might be less like perceiving its quantity than like 
believing a system of facts that involve magnitude systems.  
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The natural numbers have amazing properties that derive 
entirely from the successorship function. It appears, 
however, that human representations of natural numbers, at 
least beyond a paltry few hundred thousand iterations, rely 
on resources quite distinct from successorship or even a 
metric “number line”. A fundamental mistake made by 
classical empiricism was to assume that the inner 
representations were iconic—that they were like the outer 
represented. When reasoning about large numbers, we 
appear to rely on representations that are fundamentally 
unlike the numbers themselves. 
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Figure 3: Estimated locations of 1 million in the 
discontinuous model.  The line indicates continuous 
behavior; points above the line indicate gaplike behavior, 
while points below the line indicate an overlap in the best-
fitting lines. 
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