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Abstract 
When participants view and then reproduce simple objects that 

vary along a continuous dimension such as length or shade, or 
when they view images of faces that vary in emotional expression, 
their estimates tend to be biased toward the average value of the 
presented objects, a phenomenon that has been modeled as the 
result of a Bayesian combination of prior category knowledge with 
an imprecise memory trace (Corbin, Crawford & Vavra, 2017; 
Huttenlocher, Hedges & Vevea, 2000). Whereas previous work 
described a general cognitive strategy based on data aggregated 
across participants, here we examined individual differences in 
strategy. Thirty-six participants viewed and reproduced 496 
morphed face stimuli that ranged from angry to happy. We found 
substantial variation in the bias patterns participants produced. 
Individuals’ estimates were well fit by a model that posited 
attraction toward three categories, one at the happy end of the 
range, one at the angry end, and one that captured the entire range 
of presented stimuli, and by allowing the weight given to each 
category to vary by participant. 

Introduction 
Memories are never pure. Memory of an object is 

determined not only by that individual object, but also by 
the set, or category, to which it belongs. Specifically, items 
tend to be remembered as being more like the typical 
(average) item in a set than they actually were. For example, 
Huttenlocher, Hedges and Vevea (2000) had participants 
view and immediately reproduce individual items that 
varied along a continuous dimension such as length, width, 
or shade. They manipulated the presented distribution of 
lengths, widths, and shades and found that estimates were 
biased toward the central value of the distribution shown. 
They proposed the bias is a byproduct of a Bayesian 
combination of a noisy, unbiased memory trace of the 
stimulus with a prior distribution that reflects the presented 
stimuli. Related Bayesian accounts have been developed to 

account for bias in time perception (Jazayeri & Shadlen, 
2010), hue judgments (Olkkonen, McCarthy, & Allred, 
2014), and estimates of the sizes of familiar fruits and 
vegetables (Hemmer & Steyvers, 2009). Here we extend 
this earlier work in two important ways. First, we apply this 
explanation to rich, socially relevant stimuli: faces that vary 
in emotional expression. Second, we model individual 
differences in how people rely on category knowledge when 
remembering facial expressions. 

It is an open question whether memory for facial 
expressions can be characterized by the same principles that 
have been used to explain memory for length of a line. 
Facial expressions are socially meaningful and visually 
complex stimuli with which people have extensive prior 
experience, and unlike many other objects, faces are 
processed holistically (e.g., Maurer, Le Grand, & Mondloch, 
2002). Compared to simple geometric objects, it is more 
difficult to assess visual memory of real faces. One 
approach is to use morphing software to create gradations of 
faces that vary along a dimension of interest. By morphing 
pictures of the same actor making angry, neutral, and happy 
faces, we can create a continuum of emotional expression to 
be used in memory tasks like the immediate reproduction 
procedure described above. These morphed continua allow 
researchers to assess the degree to which a particular face is 
remembered as having an expression that is more or less 
happy or angry than it actually was.  

Few studies have used face morphs to examine bias in 
memory for individual facial expressions (but see 
Haberman, Brady & Alvarez, 2015; Haberman & Whitney, 
2009 for related work). In a study designed to examine the 
central tendency bias in face memory, Corbin, Crawford and 
Vavra (2017) ran several experiments in which participants 
viewed faces one at a time and, after each one, estimated its 
expression by adjusting a response morph. Estimates were 
consistently biased toward the central value of the stimulus 
distribution, whether it ranged from very sad to neutral, very 
happy to neutral, or moderately happy to moderately sad. 
Furthermore, the degree of this central tendency bias



 

 
Figure 1: Example stimuli. Shown are the original angry neutral, and happy faces used to generate the stimulus morphs as 

well as morphed images between angry and neutral and between neutral and happy.  
 

increased with longer retention intervals between stimulus 
and response. Bayesian models predict such an effect 
because, as the trace memory distribution becomes noisier 
(i.e., more variable), the Bayesian combination of trace 
memory and category knowledge will give more weight to 
the category knowledge (see also Huttenlocher et al., 2000; 
Crawford, Huttenlocher & Engebretson, 2000).  

The Corbin et al. (2017) work was designed to allow for 
group-level conclusions and not for modeling of data from 
individual participants. This is typical of cognitive 
psychology, which usually characterizes the cognitive 
processing of a presumably generic, modal human mind 
without examining the variation between individuals. 
However, as we have noted elsewhere (Crawford, Landy & 
Presson, 2014; Crawford, Landy & Salthouse, 2016), that 
can lead to conclusions about aggregate tendencies that do 
not reflect the behavior or cognitive processing of any single 
individual. In fact, little is known about how people differ in 
their use of stimulus distributions to inform estimates of 
individuals. Building on the Corbin et al. findings, here we 
use Bayesian hierarchical modeling to examine both 
aggregate bias patterns and bias patterns at the level of 
individual participant. This approach allows us to estimate 
how each individual combines different category structures 
to arrive at estimates.  

Emotional faces vary in physical dimensions such as 
mouth shape and brow orientation, as well as in affective 
significance, which can be processed automatically and 
unconsciously (e.g., Axelrod, Bar, & Rees, 2015; 
Vuilleumier, 2005). A continuum of emotional expression is 
necessarily bound up with physical feature variations and 
we do not attempt to tease these apart. Instead, we capitalize 
on previous work (Corbin et al., 2017; Haberman et al, 
2015, Haberman et al., 2019) showing that the continuum 
created by morphing emotional faces produces results that 
mirror those found in studies using simple dimensions such 
as size, color, or shade. This work suggests that, when 
shown a set of faces that vary on a morphed expression 
continuum, people are sensitive to the central tendency of 
the set along that dimension. 

Experiment 

Method 
Participants Thirty-six (11 male) students from the 

undergraduate participant pool at the University of 
Richmond received course credit for participating.  

Materials Images were from the NimStim face stimulus 
set1, a database of photographs of young adults depicting 
various emotional expressions. Sixteen models (8 male, 8 
female) were chosen and the closed-mouth angry, neutral, 
and happy expressions of each were used to create the 
stimuli. Because in some cases, changes in hair position led 
to distracting artifacts in the morphed sets, we edited the 
initial images to maintain consistent hair placement. Using 
FantaMorph software (Abrosoft, 2002), each model’s 
expressions were morphed from angriest to neutral to 
happiest, creating a set of 41 evenly distributed expressions 
that changed in 5% increments.  

Procedure Each trial started with a crosshair at the center 
of the screen for 830 ms followed by a centrally presented 
single image frame taken from the morphed sets of faces 
and shown for 500 ms. The faces presented for study ranged 
from an angry expression (face #5) to happy (#35) and did 
not include the five most extreme images from either end of 
the continuum. After a blank screen (66 ms), a response face 
of the same model was shown in the upper left hand corner 
of the screen. Participants were instructed to “use the right 
and left arrow keys to change the expression of the face to 
match the expression of the previous photograph.” Pressing 
the right arrow key made the expression cycle through the 
entire morph (images 0-40), cycling from happy to neutral 
to angry (or vice versa). Pressing the left arrow key cycled 
in the opposite direction. In a between subjects 

                                                             
1 Development of the MacBrain Face Stimulus Set was 

overseen by Nim Tottenham and supported by the John D. 
and Catherine T. MacArthur Foundation Research Network 
on Early Experience and Brain Development. Please contact 
Nim Tottenham at tott0006@tc.umn.edu for more 
information concerning the stimulus set. 



 

manipulation, participants were randomly assigned so that 
the starting frame of the response morph was always the 
angriest face (#0) or always the happiest face (#40). 
Participants estimated each of the 31 facial expressions for 
each of the 16 models, for a total of 496 randomly ordered 
trials. 

Modeling 
We modeled this data using a hierarchical Bayesian 

approach, simultaneously modeling individuals and group 
averages (see Figure 2). We assumed that each person was 
affected by a weighted combination of three potential 
biases: an overall inward bias toward the central category 
prototype (N), and two attractive biases toward postulated 
extreme categories, representing the endpoints of happiness 
(H) and anger (A). We assumed equal variance for each 
category, and a logistic categorization boundary. Each 
category had a separate ‘weight’ (W), which allowed the 
model to treat responses as the result of any number of 
categories from 0-3; best-fitting models uniformly predicted 
three categories (see Figure 5). 

 
Explanations of bias are usually rooted in principles of 

Bayesian estimation: biasing responses toward a prior 
expectation reduces error (e.g., Feldman, Griffiths, & 
Morgan, 2009; Huttenlocher et al., 2000). In this initial 
analysis, we simply assumed that each category attracted 
responses toward its center. This structure captures the 
relationships most often studied in category-based 
adjustment experiments, but abstracts away from the 
relationship between variability and category use--
components of the model which have previously met with 
some predictive success (Crawford et al, 2016), but which 
were to the side of our primary concerns in this initial 
analysis 

Model predictions were unbounded, but actual responses 
were bounded between an extreme happy face (valued as 1), 
on one end of the scale, and an extreme angry face (-1). To 
handle this, we assumed that when participants retrieved a 
face beyond the edges of the scale, they would select the 
most extreme face available.  

 
 

Figure 2: Graphical model diagram of the Bayesian model. Rij is the response to stimulus j presented to subject i. The 
mean response is the sum of the stimulus value, sij, and three sources of bias, corresponding to the angry (A), neutral (N), 
and happy (H) prototypes. Each prototype has a weight (W) and a location (L). The category weights were potentially 
asymmetric, depending on the valence of the initial response slider (that is, whether the response face (f) was set to 
maximally angry (-1) or maximally happy (1). The model only shows the first layer of fits: all top-level distributions were 
governed by population-level hyper parameters (see Table 1), which employed weak priors. In all cases, we assumed 
unbounded parameters to be normally distributed, and positive unbounded parameters to be gamma. 

 



 

 
Figure 3: Aggregate and Individual Model Fits: (Left panel) Mean bias in response along with predictions averaged 

across participants. Errors reflect standard errors. (Right panel) Model fits for each individual participant. Use of all three 
categories is substantial, but starting side of the response strongly impacted the relative strength of these categories. 

 
 
 
 

 
Figure 4: Individual model fits and data. Each dot is the bias in response to that stimulus, averaged across all times that 

participant viewed that expression. Each panel represents responses from one participant. Although different participants 
show quite different behaviors, the model treats each as a variation around a common theme of inward bias toward three 
weighted prototypes. 
  



 

Results 
Aggregated and individual response patterns are plotted 

in Figures 3 and 4. As can be seen, there was a strong 
pattern, overall, of attraction toward the center of the 
distribution. However, this was tempered by strong 
outward trends among most individuals. These outward 
biases tended to be moderately strong, roughly 
comparable in size to the bias toward the center, and in 
some cases dominating it. Figure 3 shows the aggregated 
model fits across participants; Figure 4 the individual fits. 

Parameters fit hierarchically are listed in Table 1 and 
include the weights attributed to each category and the 
locations of each category. 

The magnitude of the individual differences in weights 
can be characterized by the posterior deviation parameters 
(σ) governing weights. The 95% Highest Density 
Intervals for these excluded 0 (see Table 1), indicating 
that individuals differed in the weight given to these 
parameters (gamma shape parameters of roughly < 1 
correspond to high density around 0), and that these 
differences were not well explained by sampling noise. 

 
Table 1: Priors and posteriors of population parameters. 
The µ values on the locations indicate mean locations of 
the categories, while the weight parameters have shape 
and rate values. 
Parameter Population Prior 95% HDI 
WA Γ(shape, rate) 

shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: [11,168] 
rate: [6,92] 
mean: [1.6,2.4] 

WN Γ(shape, rate) 
shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: [39,196] 
rate: [42,175] 
mean: [.85,1.2] 

WH Γ(shape, rate) 
shape ~ Γ(1,0.005) 
rate ~ Γ(1,0.005) 

shape: 120,235] 
rate: [57,124] 
mean: [1.6,2.6] 

LA N(µ,τ) 
µ ~ N(-1, 80) 
τ ~ Γ(1, 200) 

 
µ:[-1.3, -1.15] 
τ: [.2, 2640] 

LN N(µ,τ) 
µ ~ N(0, 80) 
τ ~ Γ(1, 200) 

 
µ:[-0.06, -0.002] 
τ: [68, 560] 

LH N(µ,τ) 
µ ~ N(1, 80) 
τ ~ Γ(1, 200) 

 
µ:[1.225,1.325] 
τ: [52, 2040] 

tau Γ(shape, rate) 
shape ~ Γ(3,1) 
rate ~ Γ(3,1) 

shape: [3600, 
10000] 
rate: [240, 520] 

β (side bias) N(µ,τ) 
µ ~ N(0, 80) 
τ ~ Γ(5, 0.1) 

µ:[0.01, 0.02] 
τ: [4,800, 28800] 
 

 

 
Figure 5: Simplex plot of the relative weights 

accorded to each category. A dot reflects a mean 
individual. Red indicates starting values on the happy 
side, blue on the angry side. Although in principle, the 
total weight could vary, in practice each individual 
showed a mean weight between 3.3 and 3.5, making 
simplex plots a useful visualization of the three values.  

 
One factor had a strong apparent impact on the weight 

given to the left and right categories: the starting location 
of the response. To quantify this effect, we modeled the 
left and right weights as symmetric, except for a mean 
shift determined by an individual splitting parameter. This 
splitting parameter was fit to individuals; the posterior fits 
are shown in Figure 5. The results suggest a moderate 
impact of start location on category weight, such that 
people more heavily weighted the category represented in 
the starting value. 

Discussion 
Building on earlier work on inductive category effects 

on memory, we assume that estimates of an individual 
object combine an inexact memory trace of the object 
with knowledge of the set to which it belongs (e.g., 
Huttenlocher et al., 2000), producing estimates that are 
biased toward category prototypes. Such central tendency 
effects have been shown in studies using immediate 
reproduction tasks with simple stimuli that vary on one or 
two dimensions, such as size and shade (e.g., Crawford et 
al., 2001). Extending this work to more complex and 
socially relevant stimuli, Corbin et al. (2017) found that 
estimates of emotional expressions are also biased toward 
the center of the presented range of expressions, 
suggesting that participants used an inductively formed 
category to adjust estimate of faces.  

Here we further examined the kinds of category 
structures involved in face memory and the degree to 
which individuals differed in their use of these structures. 



 

As in previous work, estimates generally were biased 
toward the presented distribution’s center (here a neutral 
expression). In addition, we found substantial variability 
between participants such that most participants were not 
well described by a model that treated estimates as 
resulting from adjustment toward a single, centrally 
located category. Good model fits at the participant level 
were achieved by positing that estimates could be 
adjusted toward two additional categories (centered on 
angry and happy values) and by allowing category 
weights to vary by participant. We note that this three-
category model reflects the structure that was used to 
generate the stimuli: pictures of faces that actors made 
when told to show happy, angry and neutral expressions.  

Some of the difference in how participants weighted the 
different categories could be accounted for by the starting 
value of the response face, which was randomly assigned 
between subjects. On average, greater weight was given 
to the category that aligned with the starting position 
(either 100% happy or 100% angry). The effect of the 
starting value was not linear across the stimulus range, as 
would be expected by inadequate adjustment away from 
an anchor. Instead it appears that the starting value 
encouraged participants to rely more heavily on the 
closest emotion category. Although studies of inductive 
category learning typically focus on the distribution of 
test objects, this result suggests that response objects may 
also contribute to the category structure used during 
estimation.  

It is common to analyze group-level data and describe 
the collective’s average behavior, but this approach can 
miss meaningful variation in cognitive strategies used by 
individuals. Modeling responses at the individual level 
reveals similarities across participants as well as some 
systematic differences. From the current study, it is not 
known why people adopt the strategies that they do. The 
model’s success in capturing the different data patterns 
produced by individuals makes it a valuable framework 
for future studies of how differences in cognitive, social, 
and affective processing may influence the reliance on 
categories when remembering emotional faces. The 
variation in bias that we observed suggests that models 
pitched at the level of group averages are likely to mislead 
us away from the best interpretations. 
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