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Abstract 

Despite its omnipresence in this information-laden 

society, statistics is hard. The present study explored the 

applicability of a grounded cognition approach to learning 

basic statistical concepts. Participants in 2 experiments 

interacted with perceptually rich computer simulations 

designed to foster understanding of the relations between 

fundamental statistical concepts and to promote the ability 

to reason with statistics. During training, participants were 

asked to estimate the probability of two samples coming 

from the same population, with sample size, variability, and 

difference between means independently manipulated. The 

amount of learning during training was measured by the 

difference between participants’ confidence judgments and 

those of an ideal observer. The amount of transfer was 

assessed by the increase in accuracy from a pretest to a 

posttest. Learning and transfer were observed when tailored 

guidance was given along with the perceptually salient 

properties. Implications of our quantitative measures of 

human sensitivity to statistical concepts were discussed.  

Keywords: grounded cognition; statistical inferences; 
statistics education; variability; sample size; mean 

Introduction 

In this information-laden society, the ability to reason with 

statistical ideas and make sense of statistical information, 

has become increasingly crucial and desirable. Thanks to the 

Internet, statistical information is now everywhere and 

easily accessible. In many work-related and everyday 

contexts, statistical literacy is no longer optional since it 

facilitates basic communication. For example, picking a 

product on Amazon usually involves a comparison between 

multiple alternatives varying on different statistical 

dimensions, such as average ratings, total number of 

reviews, and underlying review distribution. Thus, statistics 

is no longer a language that only statisticians and scientists 

speak and understand, nor does it exist merely in some 

academic domains that care about statistical significance. 

The omnipresence of data makes statistical literacy a 

necessity that helps individuals not only confidently 

navigate in a sea of numbers, but understand social and 

natural phenomena more accurately.   

Despite its generally acknowledge importance and the 

great effort made to promote statistics education, statistics is 

hard to learn. Compounding the difficulty is the prevalence 

of statistics anxiety (e.g., Zeidner, 1991). On the bright side, 

technological enhancements enable new ways of presenting 

materials otherwise not feasible. One of the most common 

implementations is to create perceptually rich stimuli 

instantiating various types of interactions that students can 

draw upon when learning new concepts. This focus 

exemplifies a grounded approach to learning (Black, 2010).  

Taken together, we are interested in whether and how 

perceptually grounded interaction can foster statistical 

reasoning. This question, to our best knowledge, has not 

been explicitly documented. In the following paper, we 

discuss common difficulties and misconceptions regarding 

statistical reasoning. We then present existing efforts on 

applying a grounded approach to learning. Finally, we 

introduce the computer simulation we developed to explore 

how grounding can be applied to bolster statistical reasoning. 

Difficulties in Statistical Reasoning 

The definition of statistical reasoning takes many forms, but 

generally, it refers to the way people reason with statistical 

ideas and make sense of statistical information (Garfield & 

Gal, 1999). One of the most robust phenomena in statistics 

education is that while students can successfully implement 

procedures for computing statistics, they have trouble 

applying essentially the same statistics in applications 

assessing their conceptual understanding (Gardner & 

Hudson, 1999). This gap between conceptual and procedural 

understanding is interpreted by some researchers as due to 

an overemphasis on calculating aggregated values and 

plotting graphs for sample data (e.g., Sorto, 2006). In other 

words, statistics to many students are still only about 

describing the properties of a given data set, but not 

generalizing beyond the specific data set to infer what future 

data sets would be likely or unlikely. Moreover, successful 

statistical reasoning requires an integrated understanding of 

fundamental statistical concepts, which unfortunately many 

learners lack. An inaccurate or incomplete understanding of 

basic statistical concepts interferes with proper reasoning, 

such as sampling (e.g., Watson, 2004), variation (e.g., Cobb, 

McClain, & Gravemeijer, 2003). Lastly, statistical reasoning 

always involves reasoning with uncertainty whose difficulty 

has been widely cataloged (Tversky & Kahneman, 1974). 

Hence, it is unsurprising to see lasting difficulties in making 

sense of diverse statistical phenomena.  

A Grounded Cognition Perspective on Education 

Dewey states (1986), “There is an intimate and necessary 

relation between the process of actual experience and 

education.” This assertion echoes the gist of a grounded 

cognition perspective, an idea that environment and bodily 

experiences are of great importance to the development of 

cognitive processes (e.g., Barsalou, 1999). Therefore, many 



attempted have been made to develop perceptually-rich 

manipulatives as an aid to scaffold students’ conceptual 

learning. Research in this line has suggested three steps 

involved in a grounded cognition approach to learning: a) 

have a perceptually grounded experience, b) learn to 

imagine the perceptually grounded experience, and c) 

imagine the experience when learning from symbolic 

materials (Black, 2010). Successful attempts to apply a 

grounded approach to education have been documented in a 

wide variety of fields, such as mathematics (Suh, Moyer, & 

Heo, 2005) and physics (Zacharia, 2007). The common goal 

of these applications is to help learners develop a “feel” for 

what they are learning (Black, 2010) 

Present Study 

In the current work, we advocate a token representation in 

which each individual datum’s measurement is shown by an 

intuitive visualization in the same visual dimension. For 

example, the height of a manufactured object is indicated by 

its height on the screen. So far the closest design to our 

proposal of token representation might be the Reese’s 

Pieces Samples applet in the Rossman/Chance Applet 

Collection (Rossman & Chance, 2004) in which circles are 

colored in different shades of yellow that resemble actual 

Reese’s pieces, but this coloration is simply used to separate 

targeted pieces from non-targeted pieces with no intention 
to suggest variation among samples. Because observers can 

quickly and accurately compute ensemble statistics about a 

display (e.g., Alvarez & Oliva, 2008). Thus, there is good 

reason to believe that learners are capable of visually 

aggregating tokens to compute aggregated values of interest. 

Moreover, immediate feedback is included in our 

manipulative because repeatedly producing credible data 

that is inconsistent with a learner’s current understanding 

can support reflective change of the underlying 

misconception (e.g., Chin & Brewer, 1993). The use of 

token representation also allows us to investigate how 

perceptual scaffolds with special and generic features 

influence the effectiveness of perceptual grounding, and 

how they affect transfer of learning (if applicable). Not all 

physical properties are created equal. Neuropsychological 

studies have supported location’s uniqueness. The location 

property is processed independently from other properties 

on other dimensions (Humphreys,1981). 

Experiment 1 

Experiment 1 had two goals: on the one hand, on the one 

hand, we were interested in identifying and confirming 

some common misconceptions that college students have 

regarding statistical inference; on the other hand, we would 

like to get insights for developing a grounded simulation of 

population sampling to tackle these misconceptions. 

Participants We recruited 141 undergraduates at Indiana 

University, Bloomington in exchange for course credit.  
 

Stimuli The experiment included three parts: pretest, 

training, and posttest. Both pretest and posttest probed the 

relations between standard deviation, mean, and sample size 

and their effects on confidence judgements. The test pool 

contained 12 three or four-option multiple choice questions. 

Each test had six randomly chosen questions. The pretest 

was used to assess students’ statistical reasoning prior to 

interacting with simulations and the posttest was used to 

detect any changes in their statistical reasoning. It was a 

mixed design with conditions (color and location, discussed 

below) being a between-subject variable and factor levels 

being within-subject variables.  

Cover stories. Our cover stories took place in a factory 

where two machines produce products (widgets or balls) 

under one of the three distinctive settings (i.e., different 

levels of means) on any given day, but their settings change 

from trial to trial. On some days the two machines had the 

same settings whereas on other days they did not. Products’ 

consistency depended on which operator was in charge, 

sometimes with little variation of the products, sometimes 

moderate variation, and other times large variation (i.e., 

different levels of variability). After each day, different 

sized samples of products were presented to the examiner 

(i.e., learner) to estimate the probability that the two 

machines were set to the same setting on that day. The cover 

story was explicit that there were three levels for each of 

three variables: means, standard deviation, and sample size. 

To avoid any misleading interpretations, we limited the use 

of numerical information and standard statistical language. 

Two cover stories for two underlying visual appearances, 

color and location, were created with the same gist. 

Visuals. We picked two easily recognizable visual 

properties: color and location. For each visual dimension, 

the mean, variance, and sample sizes could be visually 

determined without any numerical information being 

required.  A color condition (Figure 1 upper panel) featured 

green circle widgets at three distinctive average lightness 

levels in an RGB color space: (0, 100, 0), (0, 120, 0), and (0, 

140, 0) (greater G values produce lighter greens). Because 

the greenness level was the average value of a population, G 

values of individual widgets were deviated from the mean 

by an amount specified by the standard deviation (19, 38, 

64). Sample size was represented by the number of widgets 

shown. A location condition (Figure 1 bottom panel) was 

identical to the color location except that we used bouncing 

ball heights as our tokens. We used bouncing heights (the 

highest point a bouncing ball reaches after it hits the floor) 

to convey location information.  

 

 
Figure 1. Two examples of a sample trial with left mean = 100, 

right mean = 140, sample size = 20, and standard deviation = 19. 

Upper panel (a sample color trial): on average, the left side 

widget’s shade of green (100) is darker than the right-side widget’s 

shade of green (140). Bottom panel (a sample location trial): on 



average, the left side balls’ bouncing height (100) was lower than 

the right-side balls’ bouncing height (140).  
 

Feedback. Trial by trial feedback included three parts: The 

first part was how close a learner’s guess (𝑃𝑔𝑢𝑒𝑠𝑠) was to the 

ideal observer’s (𝑃𝑎𝑐𝑡𝑢𝑎𝑙 ), along with how many points were 

earned 𝑋𝑒𝑎𝑟𝑛𝑒𝑑 = 100 − |𝑃𝑎𝑐𝑡𝑢𝑎𝑙 × 100 − 𝑃𝑔𝑢𝑒𝑠𝑠 × 100| . 

The ideal observer was a Bayesian model created under the 

assumption that it always behaved rationally and gave 

perfect probability estimates. Its confidence judgements 

were made with the same information made available to 

participants. 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  was calculated by Markov Chain Monte 

Carlo sampling. Hence, the closer a learner’s guess was to 

that of the ideal observer, the more points were earned. The 

second part was a facial expression. This face initially 

seemed to be anticipating a response, and would then 

present various levels of happiness depending on how close 

a guess was (the closer the happier, see Figure 2). The final 

part was the information of underlying settings, including 

level of means, standard deviation, sample size (in plain 

language matching the cover story), and a larger collection 

of objects produced under each setting. The feedback was 

designed to encourage participants to attempt to adjust their 

guesses to maximize their performance. 

 
Figure 2. Facial expression gradient as a function of how close a 

participant’s guess was to the ideal observer’s estimate.  
 

Training session. The training session had 144 trials, with 

each trial asking participants to judge the probability that the 

two machines were given the same setting based on self-

drawn samples (statistical inference). The probability was 

translated into confidence (in terms of the two settings being 

the same or different, not in terms of accuracy in their 

judgment). Confidence estimates ranged from 0% 

(definitely different) to 100% (definitely same), with 50% 

indicating complete uncertainty (increments of 1%). The 

samples were manipulated in a 3 (difference between 

means) × 3 (standard deviations) ×  3 (sample sizes) 

repeated measure design. Each factor ranged across three 

levels featuring low, medium, and high values: difference 

between means (0, 20, 40), standard deviation (19, 38, 64), 

and sample size (5,10,20). Each token was normally 

distributed with a mean of one of the mean levels, and a 

standard deviation of one of the standard deviation levels. 

To make judgments simpler, on any given trial, standard 

deviation and sample size were the same between two 

samples while means may or may not differ. Although the 

ground truth not knowable by either the learners or the Ideal 

Observer, we had half same and half different trials. The 

numbers of trials with each level of sample size and 

standard deviation were equalized accordingly.  

Procedure Participants first completed six multiple choice 

questions in the pretest with feedback on overall accuracy 

upon completion, followed by a cover story as well as 

tutorial matching the condition they were randomly assigned 

into. They were then instructed to press the “Step 1 Draw 

Samples” button to draw two separate samples from behind 

a curtain (contained within gray rectangles) and to move a 

slider to indicate their probability judgment (Step 2). Step 3 

(submit guess) and Step 4 (reveal setting information) were 

designed to provide feedback. Participants then pressed 

“Step 5 Next Game” to start a new trial, repeating the same 

five steps for 144 times. On each trial, their guess, the ideal 

observer’s estimate, and points earned were recorded. 

Figure 3 shows a complete feedback page in a color 

condition (the location condition was similar). Upon 

completing the 144th trial, participants were given their total 

score out of the maximum possible score 14400. They then 

completed a posttest containing the six remaining questions 

from the question pool. Questions were randomized and 

overall accuracy was given after completion.   

 

 

 
Figure 3. A complete feedback page of a color condition in 

Experiment 1 (verbal feedback was zoomed in).  
 

Results & Discussions 
 

We excluded 23 participants’ data due to failure to complete 

the task (defined after data examination as 4 or more 

unrecorded trials). Some people appeared to complete the 

task, but did not appear to follow instructions. Twenty-eight 

participants’ responses had less than 0.07 correlation with 

the ideal observer. Visual inspection of responses generally 

suggested random guessing. Although these participants 

may have had some other strategies, here we focus on those 

who seemed to be attempting the task (N = 90).  

Difficulties & Misconceptions. An analysis of accuracy 

with respect to the ideal observer and sensitivity to different 

factors was conducted to reveal the influence of sample 

factors on participants’ statistical reasoning. 

Accuracy analysis. The ideal observer’s estimates differed 

significantly from one level to another of a factor, so did the 

averages of participants’ guesses, ps < .000. The graph of 

difference between means in Figure 4 shows a reliable 

under-confidence in participants’ judgments compared to 

the ideal observer’s estimates (closer to 50%), ps < .000. 

On the other hand, participants (M = 60.58, SD = 7.55) were 

remarkably more confident than the ideal observer (M = 

48.45, SD = 0.39) when the standard deviation was low, 

t(91.484) =  -15.389, p < .000. A reversed pattern was 



observed at a high standard deviation level. while it was true 

that a large standard deviation made both parties less certain, 

still the ideal observer judged more likely to be the same (M 

= 53.98, SD = 0.35) while participants were toward the 

opposite (M = 48.73, SD = 8.24), p < .000.  

 
Figure 4. Aggregated participants’ probability estimates and the 

ideal observer’s estimates.  
 

Sensitivity analysis. We also measured the difference of the 

participants’ response from 50%, regardless of the direction; 

a greater deviation from 50% suggests greater confidence 

(regardless of response). This is important, because factors 

like increasing sample size should increase confidence in an 

answer, but the specific direction depends on whether the 

means are truly different! For example, when the difference 

between means was zero, a smaller standard deviation was 

typically associated with a higher probability of sameness 

whereas when the difference between means was large, a 

smaller standard deviation was typically associated with a 

higher probability of difference. The ideal observer’s 

estimates were processed in the same way. Interactions 

between factor levels and the perceiver (participants vs. the 

ideal observer) were observed at each factor, ps < .000 

(Figure 5). Indeed, compared to participants, the ideal 

observer responded to changes in factor levels with steeper 

changes in their estimates. We interpreted these 

significances as suggesting participants’ under-sensitivity 

towards changes in factor levels compared to the ideal 

observer. For each factor, Figure 5 shows the ratio of the 

average slope between the confidence of participants and 

the ideal observer. The comparisons between three ratios 

revealed an interesting pattern: relatively speaking, 

participants seemed to give difference between means the 

most consideration in their confidence judgments (R = 

0.35), followed by standard deviation (R = 0.19), and 

sample size was given the least consideration (R = 0.11). In 

fact, participants showed almost no signs of considering 

sample size in their confidence judgments.  

 

 

 
Figure 5. The ratio of the sensitivity to varying factor levels 

between the ideal observer and participants. Note that standard 

deviation and sample size were plotted against 50% whereas 

difference between means was plotted against original estimates. 
 

Learning & Transfer. Learning was measured by the 

correlation between the number of trials completed and the 

absolute difference between the idea observer’s estimates 

and the participants’ guesses.  Intuitively, if learning 

occurred during the perceptual training, the difference 

should decrease as the number of trials increased. No 

learning was observed, r(142) = .021, p = .080. Given that 

the scenarios in the posttest questions were only distantly 

related to the factory-based stories we used in training, we 

treated posttest performance as a measure of far transfer. No 

transfer was observed, t(89) = 0, p  = 1. 

The findings of Experiment 1 suggested that participants 

had difficulty reacting in the mathematically warranted way 

to varying levels of sample size, standard deviation, and 

difference between means. They were not influenced by any 

of these factors as was the ideal observer. Furthermore, 

participants are very possibly using their overall impression 

of similarity of objects within a sample to judge the 

similarity of objects across samples. Likewise, a large 

within-group variability readily left a “different” impression. 

Second, participants seemed to hold a (yet incorrect) belief 

that a difference needs to be large enough to be considered a 

real difference. They use an implicit threshold detector to 

decide whether a difference is legitimately large enough.. 

It was more surprising that there was no learning despite 

144 repetitions and immediate, trial-by-trial feedback.  

Participants were told that the relevant settings information 

should be important for their judgments and encouraged to 

explore how the three factors affected the ideal observer’ 

estimates. Thus, we speculate that the absence of learning 

was because no explicit instructions were given as to how 

participants should adjust their guesses based on the 

feedback. Hence, we are inclined to believe that explicit 

descriptions of how learners’ estimates deviated from the 

ideal estimates in accord with each of the three factors 

should be given, especially at the initial stage of learning 

when participants did not yet have “internal” guidance. 
 

Experiment 2 
 

Experiment 1 revealed that presenting relevant information 

without explicit guidance of how to use them in probability 

judgments was of little to no use to inducing learning. Thus, 

in Experiment 2, we provided tailored instead of generic 

feedback. Moreover, different levels of standard deviation, 

sample size, and difference between means were used to 

make more clear-cut trials near 0% and 100% judgments. 

There were also some aesthetic modifications to avoid 

encouraging mistakes due to interface layout. The main goal 

of Experiment 2 was to examine whether explicit guidance 

of how to use perceptually salient cues could bridge the gap 

between perceptually grounded experience and learning, and 

perhaps even transfer.  



 

Participants We recruited 197 undergraduates at Indiana 

University, Bloomington in exchange for course credit.  
 

Stimuli. The design of Experiment 2 was identical to that of 

Experiment 1 with a few modifications to feedback: a) the 

ideal observer’s estimate was mapped onto an identical 

slider immediately below the participants’ slider, in the hope 

of letting participants visually see how far their answers 

were away from the ideal observer’s; b) sliders were 

centered to avoid the tendency to always move the thumb to 

the center of screen, an act which would lead to higher 

probabilities of sameness (we had many flipped answers in 

Experiment 1); c) increased differences between each factor 

level: mean (100, 125, 150; thus difference between means: 

0, 20, 50), standard deviation (20, 36, 54), and sample size 

(4, 9, 20); d) tailored feedback was given to show how the 

ideal observer reached its estimates (discussed below).  

Tailored feedback. Regardless of the direction from 50% 

(complete uncertainty), no justification was given when the 

difference between a participant’s guess and the ideal 

observer’s estimate, Pdifference  ≤ 15%. In cases of opposite 

directions with 𝑃difference > 15%, difference between 

means was emphasized to highlight the wrong judgment of 

which type was more likely. When the directions were the 

same (both below or above 50%) and 𝑃difference > 15%, in 

an ideal-observer-more-confident-same (different) case, a 

larger sample size, a smaller (larger) standard deviation, and 

a smaller (larger) difference between the two means were 

highlighted whenever applicable. Likewise, in an ideal-

observer-less-confident-same (different) case, a smaller 

sample size, a larger (smaller) standard deviation, and a 

larger (smaller) difference between the two means were 

highlighted whenever applicable. Figure 6 shows a sample 

feedback page in a color condition, which was similar to the 

interface in a location condition.  

 

 
Figure 6. A complete feedback page in a color condition in 

Experiment 2 (verbal feedback was zoomed in).  

 

Results & Discussions 

We applied the same exclusion criteria used in experiment 1 

and included 156 participants for the following analysis. 

Sensitivity analysis. Identical to Experiment 1’s analysis, 

we conducted a sensitivity analysis for Experiment 2. Once 

again, interactions between factor levels and the perceiver 

(participants vs. the ideal observer) were observed at each 

factor, ps < .000. Figure 7 shows that while the pattern was 

identical to Experiment 1 and under-influence still existed 

participants in Experiment 2 were more influenced by 

varying factors levels (each increased by at least .15): 

difference between means (R = .55), standard deviation (R = 

0.34), and sample size (R = 0.26).  
 

 

 
Figure 7. The ratio of the sensitivity to varying factor levels 

between the ideal observer and participants. Note that standard 

deviation and sample size were plotted against 50% whereas 

difference between means was plotted against original estimates. 
 

Learning & Transfer. Learning was observed as there was 

a significant correlation between the participants’ guesses 

and number of trials, r(142) = -2.69, p = .008 (see Figure 

8a). This effect was not simply due to repetition because 

participants in Experiment 1 went through the exact same 

procedures without revealing any signs of learning. There 

was also a transfer of learning, with higher posttest accuracy 

(M = .57, SD = .23) than pretest accuracy (M = .62, SD = 

.24), t(155) = -2.27, p = 0.025 (Figure 8b). This seems to 

suggest that abstractions were grounded though perceptual 

experience and that participants can apply this perceptual 

experience to solve contextually dissimilar questions. There 

is, however, no correlation between learning during training 

and transfer of learning. That is, participants who improved 

during training did not necessarily scored higher on their 

posttest test, r(154) = 1.02, p = .31. No significant 

interaction between conditions and learning was observed, 

F(1,284) = 1.26, p = .26, nor was any reliable condition 

difference in transfer of learning, F(1,154) = 0.86, p = .77. 

Overall, the findings of Experiment 2 showed that with 

tailored feedback, participants in Experiment 2 showed both 

significant learning and transfer of learning. This suggests 

the importance of analytic feedback that specifies not just 

how good a response was, but what factors were probably 

not influencing judgments sufficiently. While the most 

people think the kind of quantitative and immediate 

feedback we gave in Experiment 1 is more common, and is 

perhaps the gold standard, the type of relatively unusual 

feedback we use in Experiment 2 is applicable to many 

educationally relevant interventions.   This feedback helps 

to not only create a grounding for basic statistical concepts, 



but also maintain its power to other relationally similar but 

superficially dissimilar contents.  

 
Figure 8a. Learning: Correlation between the nth trial and the 

absolute difference between the idea observer’s estimates 

and the participants’ guesses.  Figure 8b. Transfer.   
 

General Discussion & Conclusion 
 

The central goal of the present study was to assess the 

applicability of a grounded cognition approach to learning 

basic statistical concepts, especially their roles in a more 

conceptually challenging statistical application – statistical 

inference. Across two experiments, we found that tailored 

guidance along with perceptually salient properties has the 

potential to induce both learning (during training) and 

transfer of learning.   

Psychometrically, the present study proposes a new 

paradigm to quantitatively measure people’s sensitivity to 

three factors underlying statistical inference (difference 

between means, variance, and sample size). Our task is 

promising because it 1) allows us to compare learners’ 

relative sensitivity to these three factors so as to make 

quantitative claims about how much each factor is 

influencing their judgments, 2) allows us to compare these 

influences to an ideal observer that makes optimal use of the 

information in a display, 3) allows us to quantitatively 

measure improvements in the use of these factors over 

training, 4) allows us to give learners quantitative and 

objective feedback on their task performance, and 5) gives 

us a method for quantitatively assessing performance on a 

statistical inference task that is potentially independent 

from, but possibly correlated with, other explicit measures 

of statistical reasoning.  This last feature allows us to 

empirically determine if implicit and explicit measures of 

statistical reasoning are tapping into the same knowledge. 

Experiment 2 produces two kinds of improvement: a) 

training improvement from beginning to the end and b) 

improvement from pretest to posttest, but they are not 

correlated. This suggests that reasoning with statistics is not 

just one thing. An improved ability to reason with 

variability, sample size, and difference between means is 

manifested in both a quantitative and a qualitative way. A 

quantitative understanding is through improved numerical 

integration. Some people improve their ability to integrate 

variability, sample size, and difference between means, and 

hence improve during training. They learn how to give more 

appropriate consideration to the relative weight of each 

factor. A qualitative understanding, on the other hand, is 

manifested through transfer of learning from a pretest to a 

posttest. These people pay attention to the detailed, analytic 

feedback and they do better on posttest (Experiment 1 does 

not have this kind of feedback). Compared to numerical 

judgments during training, pretest and posttest questions are 

more concerned with (at a descriptive level) how changing 

variability, sample size, or difference between means affects 

confidence respectively. Hence, learners who demonstrate a 

qualitative understanding learn directionally how important 

each factor is in statistical reasoning. More importantly, as 

suggested by the lack of correlation between the two 

improvements, they do not occur in an all-or-none fashion. 

Specifically, integrating statistical information is different 

from just being able explicitly state if and how sample size, 

variability, and difference between means should affect 

judgments.  
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