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Abstract 

A key goal in both education and higher-order cognition 
research is to understand how relational concepts are best 
learned. In the current work, we present a novel approach for 
learning complex relational categories – a low-support, 
interactive discovery interface. The platform, which allows 
learners to make modifications to exemplars and see the 
corresponding effects on membership, holds the potential to 
augment relational learning by facilitating self-directed, 
alignably-different comparisons that explore what the learner 
does not yet understand. We compared interactive learning to an 
identification learning task. Participants were assessed on their 
ability to generalize category knowledge to novel exemplars 
from the same domain. Although identification learners were 
provided with seven times as many positive examples of the 
category during training, interactive learners demonstrated 
enhanced generalization accuracy and knowledge of specific 
membership constraints. Moreover, the data suggest that 
identification learners tended to overgeneralize category 
knowledge to non-members – a problem that interactive learners 
exhibited to a significantly lesser degree. Overall, the results 
show interactive training to be a powerful tool for 
supplementing relational category learning, with particular 
utility for refining category knowledge. We conclude with 
implications of these findings and promising future directions. 

Keywords: relational categories; structural alignment; 
discovery learning; category learning; generalization 

Introduction 
A key aim of higher-order cognition research is to 
understand the mechanisms that undergird the ability for 
humans to acquire and use abstract, complex categories. The 
literature in concepts and categories research has primarily 
been devoted to the study of attribute categories – 
categories whose members possess a set of independent 
features by which they can be classified. Research on 
attribute category learning has unequivocally advanced our 
understanding of human concept acquisition and its many 
facets. 

However, much of the category knowledge we possess is 
not reducible to knowledge of specific attributes – myriad 
concepts such as positive feedback loop are abstract, 
attribute-agnostic, and dependent on relationships rather 
than features. Fittingly, an increasing amount of empirical 
attention has been granted to the study of relational 
categories (Gentner & Kurtz, 2005; Markman & Stilwell, 
2001). Relational categories are rule-like categories whose 
members share a common relational structure characterized 
by extrinsic relationships between objects and/or attributes 
(e.g., protection, sibling, reciprocity). Because relational 

categories need only share a relational structure to belong, 
members of a category can be quite featurally disparate 
(e.g., your sibling and your dog’s sibling hopefully don’t 
look alike). In this way, relational category members share 
analogical similarity. It should be noted that relational 
categories are not an idiosyncratic facet of category learning 
- roughly half of the 100 highest frequency nouns are 
relational (Asmuth & Gentner, in press). Thus, to 
understand human category learning generally, it is critical 
to understand relational category learning. 

A question that bears both theoretical and applied import 
is: how do we come to acquire relational category 
knowledge? Previous research has explored the potential for 
comparison to promote relational discovery and transfer. 
This work follows from a large body of research showing 
the benefits of comparison to analogical transfer (Gick & 
Holyoak, 1983; Loewenstein, Thompson, & Gentner, 1999; 
see also Alfieri, Nokes-Malach, & Schunn, 2013 for a meta-
analysis and review). Studies of comparison with relational 
categories have largely corroborated findings from the 
analogical transfer literature; presenting same-category pairs 
(Patterson & Kurtz, 2015) or a mixture of same- and 
different-category pairs (Kurtz, Boukrina, & Gentner, 2013) 
during training leads to enhanced learning and transfer over 
sequential item presentations. The power of comparison can 
be understood through a process of structural alignment 
(Markman & Gentner, 1993). Comparing instances 
facilitates the alignment of their parallel relational 
predicates. This serves to highlight common relational 
structure that is not salient when either instance is 
considered in isolation. Additionally, comparison facilitates 
abstraction, which promotes later analogical retrieval and 
transfer. 

As many of the core concepts taught in educational 
settings are relational in nature (e.g., evolution by natural 
selection, Newton’s laws), relational categories represent a 
key bridge between cognitive and educational research 
(Goldwater & Schalk, 2016). Thus, investigating how 
relational categories are best learned can both palpably 
advance educational techniques and further basic, 
theoretical understandings. In the present work, we draw on 
an innovative area of education research that serves as a 
promising avenue for enhancing relational category 
learning: discovery learning. Discovery learning generally 
refers to unsupported learning where the learner actively 
constructs their understanding of some target information 
using only a set of materials or a task environment. Though 
many flavors of discovery have been the subject of study, a 



 

 

common theme in the literature is that completely unassisted 
discovery approaches are not effective for learning (Mayer, 
2004; for a meta-analysis see Alfieri, Brooks, Aldrich, & 
Tenenbaum, 2011). Among other reasons, the large 
cognitive load incurred by needing to generate and explore 
hypotheses (Sweller, 1988) while metacognitively 
maintaining an idea of what is known and what needs to be 
known (Kirschner, Sweller, & Clark, 2006) can present 
challenges for the approach. However, when some guidance 
is introduced (such as direct instruction – e.g., Chen & 
Klahr, 1999), discovery learning can be a highly effective 
tool (Alfieri et al., 2011). 

Discovery learning has the clear potential to augment the 
learning of complex relational concepts in educational 
settings – particularly when the target category is abstract or 
when classroom instruction is subpar. With a basic 
understanding of the target category, an interactive 
environment that enables learners to freely create or modify 
category exemplars and receive dynamic category 
membership feedback ought to enhance category 
knowledge, notably through three mechanisms. First, it 
would allow learners to engage in self-directed exploration 
that is specifically catered to what they do not understand or 
need further clarification on. The opportunity to select 
exemplars for study has been shown to confer benefits on 
rule-based category learning (e.g., Markant & Gureckis, 
2014). Second, the dynamic membership feedback provided 
by the task interface would implicitly encourage 
explanations about the causes underlying the effects of 
learners’ modifications. Such self-explanation has been 
demonstrated to be a powerful facilitator of concept 
acquisition (e.g., Chi, de Leeuw, Chiu, & LaVancher, 1994). 
Third, critically, a learning environment such as this should 
strongly engage analogical processing faculties. In 
modifying an exemplar and receiving membership feedback, 
the learner effectively creates a temporally juxtaposed 
comparison between the item’s new state (s) and s-1. 
Modifications that do not break membership create 
alignably-different, same-category comparisons. These 
comparisons should promote highlighting of common 
relational structure and facilitate abstraction. Conversely, 
modifications that do break membership create alignably-
different different-category comparisons, which critically 
should serve to highlight membership-relevant relations. 

In the present work, we explore the efficacy of a low-
support, interactive discovery learning tool to promote the 
learning of complex relational categories. To avoid effects 
of domain knowledge, we created an artificial, multi-
constraint category that served as the target of learning. 
Advised by the discovery learning literature and pilot data, 
we gave participants some support to reduce cognitive load. 
This support was a clear, but quite abstract, definition of the 
category that was given to all learners immediately prior to 
the learning phase. In the interactive condition, participants 
were given a computerized interface where they could 
engage in self-directed exploration of three examples of the 
category. We contrasted interactive training with an 

identification learning control in which learners were 
exposed to a larger number of exemplars in the context of a 
member identification task. To evaluate the effectiveness of 
the interactive learning mode, we compared the two learning 
conditions on their ability to generalize category knowledge 
to novel exemplars. We predicted interactive learning would 
lead to enhanced generalization performance. 

Method  
Participants 
Seventy undergraduates from Binghamton University 
participated to partially fulfill a course requirement.   
 
Materials 

The training and generalization stimuli consisted of 
arrangements of blocks that varied in their size (small, 
medium, or large), color (white, gray, or dark brown), 
border color (black or distinctive blue), and spatial location 
(see Figure 1 for examples). The ‘matched containment’ 
concept instantiated by these blocks was quite complex. 
Category members were characterized by the presence of 
three or more blocks that obeyed all of the following 
constraints: (1) the blocks were aligned vertically or 
horizontally, (2) two of the involved blocks were special by 
sharing a distinctive blue border color, (3) the special blocks 
were exactly matched in their attributes, (4) the special 
blocks contained/flanked at least one additional ‘normal-
bordered’ block in the lineup, and (5) all of the contained, 
normal blocks matched the special blocks on at least one 
attribute (i.e., color, size, or both).  

Twenty-one category members and 21 non-members were 
used as the stimuli for the identification condition. All 
members contained the category-defining core – constituted 
by either three (Length 3 [Len3]; two flanking, one flanked) 
or four (Length 4 [Len4]; two flanking, two flanked) objects 
– and one additional distracter block, such that all examples 
had length + 1 blocks. The category core and distracter 
block were varied in their attributes (i.e., orientation of core 
[vertical, horizontal], spatial location, color, size) across 
examples to ensure an attribute-based solution was not 
available. 
    The members were comprised of six item types, each 
which instantiated the special-normal match constraint in a 
unique way. For both Len3 and Len4 stimuli, there were 
items whose flanked object(s) matched based on (1) color, 
(2) size, (3) or both color and size. For Len4 stimuli there 
were also items whose flanked objects consisted of (4) one 
color and one size match, (5) one both and one color match, 
or (6) one both and one size match. The item breakdown can 
be seen in Table 1. Since the Len4 stimuli included 
matching types that were distinct from those present in the 
Len3 stimuli, the Len4 examples were weighted on types 4-
6 to ensure comprehensive coverage of the category for 
identification learners. The non-member set used was 
programmatically generated by randomly sampling and 
arranging blocks, with the constraint that two of the blocks 



 

 

had to possess the distinctive border. Number of blocks was 
matched between the members and non-members. The 
interactive condition was given considerably fewer 
examples: one Len3 color match and two Len4 examples, 
each which had one color match and one size match.  

To evaluate participants’ ability to generalize their 
knowledge, a distinct set of 30 members and 30 non-
members was created. The members were sampled from 
several match types. Critically, non-members consisted of 
items that violated the constraints of membership in several 
focal ways (see Table 2 for generalization item breakdown). 
As knowledge of the specific constraint that was violated 
was necessary to get each of these items correct, they served 
as a stringent test of category knowledge.  

 

 
 

Figure 1: Eight example stimuli from the training 
(identification) and generalization phases. 

Design and Procedure 
Participants were randomly assigned to either identification 
(n = 39) or interactive (n = 31) learning conditions in a 
between-subjects design. Due to a spreadsheet error, 
condition assignments were slightly imbalanced.  

In the pre-training instructions, all subjects were first 
informed they would be learning about something called a 
‘Togging situation’ – the arbitrary category label – before 
being provided with an abstract definition of the category: 
“A Togging situation occurs when (1) there are two 
matching special objects with other objects in the space 
between them; and (2) all the objects in the space between 
have at least one thing in common with the special objects.” 
Subjects were then told they were to gain a full and clear 
understanding of Togging situations by engaging in the 
upcoming learning experience. 

 
Table 1: Number of category members by length and type 

for identification training. 
 

 

Condition-specific instructions for the interactive group 
informed learners they would receive (1) an ‘exploration 
zone’ that would tell them if the objects inside were 
currently in a Togging situation and (2) a set of ‘exploration 
tools’ that could be used to modify the objects/attributes in 
informative ways. They were then told they could gain an 
understanding by paying attention to modifications that 
break the Togging situation and by trying to create novel 
Togging situations. To combat confirmation bias – as 
piloting revealed this to be a considerable impediment to 
learning – subjects were also told to try to prove their ideas 
about Togging wrong by fully testing them. Lastly, subjects 
were informed they would be tested later and that they 
would have seven minutes with the learning task. Following 
these general task instructions, interactive learners then read 
a brief tutorial that described the ways they could modify 
the examples with the exploration tools. 

 
Table 2: Number of exemplars by length, type, and 

membership in the generalization assessment. 
 

 
 

Instructions in the identification condition informed 
learners they would receive a series of frames with objects 
inside, some of which would have a Togging situation. They 
were told they could gain an understanding by paying 
attention to the frames and feedback they received and by 
learning to identify which frames contained a Togging 
situation. The identification learners also received an 
analogous instruction to try to prove their ideas about 
Togging wrong by fully considering the frames and 
feedback on each trial. Finally, identification learners were 
informed of the upcoming test. 

To remind participants, and guide learning, both 
conditions were again given the abstract category definition 
immediately prior to the learning task.  

Training – Interactive Condition The training interface 
can be seen in Figure 2. In the center of the interface was an 
‘exploration zone’ that dynamically checked whether the 
constraints of category membership were met by the objects 
inside. The zone’s border color turned green if the 
constraints were met, and red if not. A textual notification 
above the zone regarding membership mirrored the color 
feedback. The exploration zone started with a positive 
example of the category, randomly selected from the three 



 

 

positive examples that were provided to the interactive 
group.  

Participants could freely engage the training interface in 
five distinct ways. First, clicking the ‘new’ button cycled 
through the three positive examples. The button allowed 
learners to reset the exploration zone to a positive example 
if they became lost with their current discovery path and 
also get experience with the three different instantiations of 
the category. Second, double clicking a block would change 
its color – cycling in order through the three colors with 
each double click. Third, clicking and dragging the bottom 
right corner of a block diagonally allowed participants to 
stretch or shrink it to one of the three discrete sizes. Fourth, 
clicking and dragging elsewhere on a block allowed 
participants to change its spatial location. Lastly, 
participants could add or remove objects from the 
exploration zone. To the left of the zone was a space 
containing additional normal blocks that varied in their size 
and color. Participants could bring additional blocks into the 
exploration zone or remove any of the blocks from the zone 
to this space. This allowed participants to: (1) swap blocks 
to change attributes, (2) simplify the example in the 
exploration zone, and (3) create more elaborate examples of 
the category that involved more objects. 

 
 

Figure 2: Visual of the interactive workspace. 
 
Since there were many ways participants could interact 

with the interface, they were provided with a ‘how to’ cheat-
sheet to the right of the exploration zone. During the task, 
participants had seven minutes for self-directed 
investigation of the category. A timer in the upper left 
corner of the interface showed how much time remained. To 
encourage participants to stay on task, a query was 
presented below the text notification of membership. The 
query corresponded to the current state of the objects in the 
exploration zone. When category constraints were met, the 
query asked participants if they could, “find a way to break 
the Togging situation.” When the constraints were not met, 
it asked if they could “find a way to make a Togging 
situation again.” Besides this general query, no additional 
direction was given during the task. 

Training – Identification Condition Learners in the 
identification group were directly provided with 21 

examples of the category – seven times as many as were 
provided to interactive learners. These 21 positive cases 
were combined with the 21 negative cases in a random order 
for each participant. Participants made one pass through the 
set. On each trial, the participant was presented with an item 
and two response buttons (“Togging situation”, “Not a 
Togging situation”). The amount of time to study the 
example and make a response was unconstrained. 
Participants selected their response using the mouse and 
were given feedback indicating if they were (in)correct and 
whether the item was (not) an example of a Togging 
situation. Feedback was presented for 2.5s before moving 
on to the next trial. 

Generalization Assessment Following the learning phase, 
all participants were given a generalization assessment to 
assay their ability to both identify category members and 
correctly reject near-miss non-members. The 60 
generalization items were presented in a randomized order 
for each participant. The trial structure of the generalization 
phase was identical to that of identification training, except 
no feedback was given.  

Results 
Training 
All except three learners in the identification condition (M = 
.83, SE = .02) performed reliably above chance. Data from 
these non-learners were retained in the subsequent analyses 
for two reasons: (1) the general pattern of results did not 
change when their data were excluded, and (2) there was not 
a comparable basis for excluding interactive learners. 
Identification training took 3-8 minutes (M = 3.89 minutes, 
SE = .14). Though there was a wide range, time spent during 
training did not predict generalization accuracy in a trial-
wise logistic regression (β = -0.005, SE = 0.01, Z = -.44, p = 
.66).  

Interactive learners made between 151 and 321 
manipulations (M = 227.21, SE = 6.60). Number of 
manipulations, however, did not predict generalization 
accuracy (β = -0.0001, SE = 0.001, Z = -.12, p = .91), 
suggesting that the quantity of manipulations was not 
critical. However, higher rates of crossover – the proportion 
of the manipulations that switched the state from member to 
non-member (or vice versa) – were associated with higher 
generalization accuracy (β = 3.05, SE = 0.86, Z = 3.54, p < 
.001), suggesting that generating alignably-different 
different-category comparisons is key for getting the most 
out of the platform. 
 
Generalization Accuracy 
Trial-wise accuracy data were modeled with logistic 
regressions. Using condition as the lone predictor, the main 
analysis yielded the key finding that interactive learning (M 
= .73, SE = .01) significantly augmented generalizable 
category knowledge over identification learning (M = .67, 
SE = .01); β = 0.29, SE = 0.07, Z = 4.27, p < .001. 



 

 

To further probe the effect of condition, we conducted a 
follow-up analysis to see how each condition performed on 
members and non-members. To this end, we used condition, 
item membership (1, 0), and their interaction as predictors. 
Interestingly, the regression revealed a highly reliable cross-
over interaction between condition and item membership 
(see Figure 3; β = 1.35, SE = 0.18, Z = 7.70, p < .001). The 
interaction was marked by a reliable enhancement for the 
identification group on category members  (identification: M 
= .93, SE = .01; interactive: M = .87, SE = .01; β = -0.63, SE 
= 0.15, Z = -4.20, p < .001), but a reliable enhancement for 
the interactive group on non-members (identification: M = 
.41, SE = .01; interactive: M = .59, SE = .02; β = 0.72, SE = 
0.09, Z = 8.01, p < .001). It should be noted that average 
accuracy on non-members was generally low. This is 
directly attributable to their more challenging nature. 
Contrasted with the member set, on which it was possible to 
successfully identify all items using knowledge of any 
single relational constraint, the non-member set consisted of 
items that each focally violated a constraint of membership. 
To perform successfully on these, participants required 
knowledge of the specific constraint that was violated in 
each instance. Thus, performance on the non-members 
serves as a proxy for learners’ understanding of the 
category’s composite constraints. While learners still had 
much to learn about the category, low means should not be 
interpreted to mean that performance was at chance or 
random in nature. Rather, the high accuracy observed for 
members suggests that learners took a limited understanding 
of the constraints of membership and overgeneralized it to 
non-members.  

Given the curious reversal in the effect of condition 
between levels of item membership, we were prompted to 
explore the possibility that identification learners were more 
likely to overgeneralize category knowledge, which 
ostensibly would explain this pattern of results. We used 
two signal detection theory measures to this end: d’ and β. 
d’ is a measure of sensitivity to the signal when present that 
reflects hit rate on signal trials while adjusting for false 
alarm rate on noise trials. A higher d’ indicates a greater 
sensitivity to the underlying signal (category members). β is 
a likelihood ratio that reflects response bias. A β of 1 
indicates learners were neither biased towards nor against 
extending the category label, whereas β below or above 1 
indicates a bias towards extending or not extending the 
label, respectively. d’ and β were computed for each subject 
and the values for each were then predicted by condition in 
separate linear regressions. Despite showing increased 
accuracy for members, identification learners were not more 
sensitive, owing to a significantly increased false alarm rate 
(identification: M = 0.58, SE = .04; interactive: M = 0.41, 
SE = .04; β = -0.17, SE = 0.05, t(68) = -3.19, p < .01). In 
fact, a numerical advantage in d’ favored interactive learners 
but did not reach significance (identification: M = 1.46, SE 
= .09; interactive: M = 1.71, SE = .21; β = 0.24, SE = 0.21, 
t(68) = 1.16, p = .25). Additionally, identification learners 
were found to be significantly more biased towards 

endorsing items as members – showing lower β than their 
interactive counterparts (identification: M = 0.34, SE = .06; 
interactive: M = 0.61, SE = .09; β = 0.27, SE = 0.11, t(68) = 
2.50, p < .05). Collectively, these measures indicate that the 
identification group’s enhanced accuracy for members was 
not the result of greater sensitivity. Instead, it appears to be 
a byproduct of a liberal extension of a limited understanding 
of the category, relative to interactive learners. 

 

 
 

Figure 3: Generalization performance by condition and item 
membership. Error bars represent +/- 1 SE. 

Discussion 
The primary goal of this study was to evaluate the potential 
for a novel, interactive discovery platform to facilitate the 
acquisition of a complex relational concept. Consistent with 
our hypothesis, our findings resolutely show that interactive 
training is an effective way to affect relational category 
knowledge. Compared to identification training – a learning 
mode organic to both category learning experiments as well 
as common educational practices – interactive learners 
exhibited an enhanced ability to generalize and enriched 
knowledge of specific membership constraints.  

The results of this study inform both basic and applied 
interests. Our data suggest that our interactive platform can 
aptly supplement learning when complex, abstract relational 
categories are the target of learning. On an intriguing note, 
this paradigm appears to possess a distinct utility for 
combating overgeneralization by helping learners to explore 
and refine the boundaries of membership. It should be noted 
these advantages accrued despite the minimalistic support 
that was given (compared to other guided discovery 
approaches; e.g., Chen & Klahr, 1999), the short amount of 
time allotted for learning, and the transfer appropriate 
processing advantage granted to identification learners in 
the shared task between training and test. 

A limitation of this study is the use of randomly generated 
non-members in the identification training condition. As a 
function of the random generation, they tended to be slightly 
more entropic than the positive examples. This exposes a 
possible deflationary account of these findings – that 
identification learners may have simply learned to 
differentiate more and less entropic examples from each 

*** 

*** 



 

 

other, which might explain poorer generalization 
performance. However, this account is unlikely for two 
main reasons. First, learners were provided a definition of 
the relational concept not once, but twice, prior to training. 
A basic understanding of the category should have guided 
learners to seek information that extended that 
understanding, not part with it altogether. Second, if learners 
acquired and used an entropy strategy during training, the 
effects of this should have been notable in the generalization 
data. Unlike the training set, non-members in the 
generalization phase were orderly. If learners adopted an 
entropy strategy, they would likely use it before realizing, 
later in the generalization phase, that there were not any 
entropic cases – at which point they might shift to the 
principle-relevant knowledge they acquired through the 
definition and learning experience. If this occurred, we 
should expect better performance later in the generalization 
phase. To investigate this possibility, we compared 
performance on the first 30 trials to the second 30 trials of 
generalization for identification learners. The difference was 
non-significant (p = .81), suggesting identification learners 
engaged the task the way we intended. Nevertheless, 
planned research using yoked controls will provide more 
definitive evidence.  

Further work will be necessary to specify the cognitive 
processes behind the benefits of interaction in relational 
category learning. Consistent with Markant & Gureckis 
(2014), the effect of actively selecting modifications that 
supplement one’s current understanding is likely to be 
critical. However, our next main pursuit in developing this 
platform is to more deeply explore the potential for analogy 
and comparison to serve as the engine for interactive 
relational category learning. Much of the power of this 
learning paradigm likely follows from its facilitation of 
informative, user-created comparisons with alignable 
differences – a possibility echoed by the higher 
generalization accuracy associated with higher rates of 
category crossover. To the extent that this underlies its 
utility, providing learners with co-presented exemplars that 
are dynamically linked in their manipulations should 
promote enhanced generalization and transfer, and possibly 
serve to shorten acquisition time. Contrasting this 
interactive approach with static comparisons and other 
educational tools, such as the explicit elicitation of self-
explanations, will be integral to the evaluation of this tool’s 
potency in upcoming research. 
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