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ABSTRACT 

Formal mathematics is a paragon of abstractness.  It thus seems natural to assume that the 

mathematical expert should rely more on symbolic or conceptual processes, and less on 

perception and action.  We argue instead that mathematical proficiency relies on perceptual 

systems that have been retrained to implement mathematical skills.  Specifically, we 

investigated whether the visual system—in particular, object-based attention—is retrained so 

that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual 

processing.  Object-based attention occurs when the visual system organizes the world into 

discrete objects, which then guide the deployment of attention.  One classic signature of 

object-based attention is better perceptual discrimination within, rather than between, visual 

objects.  The current study reports that object-based attention occurs not only for simple 

shapes but also for symbolic mathematical elements within algebraic expressions—but only 

among individuals who have mastered the hierarchical syntax of algebra.  Moreover, among 

these individuals, increased object-based attention within algebraic expressions is associated 

with a better ability to evaluate algebraic validity.  These results suggest that, in mastering the 

rules of algebra, people retrain their visual system to represent and evaluate abstract 

mathematical structure.  We thus argue that algebraic expertise involves the regimentation 

and reuse of evolutionarily-ancient perceptual processes.  Our findings implicate the visual 

system as central to learning and reasoning in mathematics, leading us to favor educational 

approaches to mathematics and related STEM fields that encourage students to adapt, not 

abandon, their use of perception.  (240 words) 

 
Keywords: embodied cognition; neural reuse; object-based attention; algebraic reasoning; 
Rigged Up Perception and Action Systems (RUPAS)  
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SIGNIFICANCE 

Teaching mathematical skills requires knowing how those skills are actually accomplished by 

the mathematically proficient.  Traditionally, mathematical reasoning was assumed to be 

divorced from perception and action; pedagogies have thus been devoted to helping 

students move beyond “superficial” perceptual strategies.  There is mounting evidence, 

however, that mathematical skills actually rely on our perceptual systems, retrained by 

experience to implement abstract mathematical relations and transformations.  The current 

study investigated one aspect of this perceptual foundation: the use of object-based attention 

to represent and evaluate hierarchical algebraic relations.  Rather than teaching students to 

do mathematics the way common sense suggests it should be done, this basic research on 

how mathematics is actually accomplished could inform the development of educational 

interventions that treat trained-up perceptual systems as a proper component of 

mathematical expertise.  (130 words)  
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1 Introduction 

Mathematical practice is undeniably perceptual.  We read equations, look at geometric 

diagrams, inspect graphs.  In the canonical mathematical encounter, a mathematician 

scribbles across a blackboard, writes equations and diagrams, steps back to inspect their 

inscriptions.  These mathematical inscriptions must be seen1 to be used.  How should we 

make sense of all this perception within mathematical activity? The standard account of 

mathematics—and of mathematical cognition—treats this perceptual labor as decidedly 

peripheral, even epiphenomenal.  On this account, the core feature of mathematics is its 

abstraction.  The competent mathematician, therefore, might use perception to read 

equations or view diagrams, but should immediately translate that perceptual information 

into more abstract, perhaps symbolic, internal representations (e.g., Anderson, 2005).  

Perception and action are merely an interface between the environment and “real” 

mathematical thinking.  The more expert we become, the story goes, the less we should rely 

on superficial visuospatial features (e.g., Kirshner, 1989).  Mathematical reasoning should be 

divorced from the vulgar details of perception and action.   

There is certainly something to this account.  An algebraic equation has the same 

meaning whether it is written big or small, with red or black ink.  Successful mathematical 

reasoning requires stripping away superficial, irrelevant details to access the underlying 

abstract structure.  There is a danger, however, of throwing out the perceptual baby with the 

bathwater of irrelevant detail.  There are theoretical and empirical reasons to suppose that 

perception and action lie at the core of mathematical expertise.  Mathematics is too recent a 

                                                

1 Or, for blind mathematicians, they must be touched.   
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cultural development for humans to have evolved mathematics-specific neural resources.  

Human mathematical abilities will need to rely on evolutionarily-older capacities, recycled for 

new purposes (Anderson, 2015; Dehaene and Cohen, 2007; Landy, Allen, and Zednik, 2014; 

Goldstone et al, under review).  Could our perceptual systems be one of those recycled 

resources?  

One context in which the visual system might perform mathematical work is 

symbolic algebra.  Algebraic notation expresses relations that are both abstract and 

hierarchical, but the notation itself relies heavily on visuospatial features to represent those 

relations (e.g., Kirshner, 1989; Whitehead, 1911).  For instance, algebraic precedence is 

associated with spatial proximity.  While low-precedence operations like addition require a 

full symbol (p+q), multiplication requires only an abbreviated symbol (p•q) or no symbol at 

all (pq).  If the visual system were sensitive to such regularities, then the hierarchical structure 

of algebra could be read off directly from an expression’s layout.  And, indeed, people are 

sensitive to these visuospatial norms.  When they judge the validity of an algebraic equation, 

performance is systematically worse if visual grouping or proximity conflicts with operator 

precedence (e.g., less space around addition than around multiplication), and systematically 

improved if visuospatial features align with operator precedence (Landy and Goldstone, 

2007a; Rivera and Garrigan, 2016).  Conversely, when adults write out algebraic expressions, 

they place terms connected by a higher-precedence operation (e.g., multiplication) closer 

together than those connected by a lower-precedence operation (e.g., addition; Landy and 

Goldstone, 2007b).  Thus, mathematical notations are designed to tap into pre-existing 

perceptual biases, grouping related elements according to Gestalt principles (Wagemans et al, 

2012), and these design choices have cognitive benefits.   
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The influence of this formally irrelevant visuospatial information actually increases 

with competence and experience (Braithwaite et al, 2016).  This suggests that, over time, 

people become increasingly sensitive to visual regularities in algebraic notation, perhaps 

because they are relying more on the notation’s visospatial layout to make algebraic 

judgments.  Mastering a notation’s visuospatial structure allows us to transform symbolic, 

sequential reasoning of the sort found in mathematics or logic into a series of simpler 

perceptual tasks (Hutchins, 1995; Rumelhart et al, 1986).  As Alfred North Whitehead (1911, 

p. 61) observed a century ago, “by the aid of symbolism, we can make transitions in 

reasoning almost mechanically by the eye, which otherwise would call into play the higher 

faculties of the brain.” 

A more radical possibility is that mathematical experience might actually retrain our 

perceptual systems so that—in addition to remaining sensitive to the visuospatial structure 

of the notation itself—they also impose perceptual structure onto mathematical 

representations (Goldstone, Landy, and Son, 2010).  Done right, this would transform 

symbolic mathematical relations into perceptual structure.  One way that our visual system 

might play this role for algebra—where symbolic, hierarchical relations are critical—is by 

imposing hierarchical structure on perceived algebraic expressions.   

1.1 Object-based attention in vision and reasoning 

Our perceptual systems constantly construct and impose structure upon the 

observed environment.  The visual system, for instance, imposes structure on sensory input 

by organizing the visual world into discrete objects (Wagemans et al, 2012).  One facet of 

this structured, hierarchical visual processing is object-based attention, in which the visual world 

is organized into discrete objects, and attending to one part or feature of an object facilitates 
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attention to the rest of the object (Kimchi, Yeshurun, and Cohen-Savransky, 2007; 

Kahneman and Henik, 1981; Vecera and Farah, 1994).  Object-based attention is typically 

detected in experimental paradigms involving visual property verification.  People are better 

at comparing visual properties (e.g., color) when elements are within a single visual object 

rather than distributed between objects (Duncan, 1984; Fig. 1A).   

The construction of visual objects does not depend exclusively on sensory cues but 

is shaped also by experience-dependent expectations.  For instance, Zemel et al (2002) had 

participants make a comparative judgment about features of objects in a visual scene, but 

added an occluding object to make it ambiguous whether the features belonged to a single, 

unusually-shaped object or two separate objects.  When participants had not observed that 

unusual shape previously, their responses were consistent with comparing features that 

belonged unambiguously to separate objects.  This suggests that, in line with Gestalt 

principles, they had interpreted the two parts as belonging to distinct objects.  But when 

participants had previous experience with objects with that unusual shape, they were faster 

to make the perceptual judgment, as if now they interpreted the two features as belonging to 

the same oddly-shaped object.  Thus, the visual system constructs objects based not only on 

sensory cues but also past perceptual experience.   

Could mathematical expertise involve adapting object-based attention to perform 

algebraic reasoning?  The rules of algebra—such as the rules governing operator 

precedence—impose a hierarchical structure that combines simple elements into more 

complex expressions (Fig. 1B).  For instance, when constants and variables are multiplied 

together, they act as a unified grouping within the larger expression, known as a “term.” 

Individual terms are then added, subtracted, or combined in other ways to create even more 
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complex expressions, much like words and phrases are combined to form complex 

sentences.  Recognizing this hierarchical structure is critical to algebraic reasoning.  When a 

complex algebraic expression is manipulated, valid manipulations maintain algebraic sub-

expressions or act on them in systematic ways; invalid manipulations violate or ignore sub-

expressions (Fig. 1C).  For instance, given the expression ‘a • b + x • y,’ the rules of algebra 

license swapping the two algebraic sub-expressions, ‘x • y’ and ‘a • b,’ to get the new 

expression ‘x • y  + a • b.’ By contrast, one cannot swap the two adjacent variables ‘b’ and ‘x’  

to get ‘a • x  + b • y.’ This manipulation violates the precedence rules for arithmetic 

operations. But to detect this violation, it suffices to notice that it breaks apart the two 

algebraic sub-expressions.  Thus, if our visual system were retrained so that—in addition to 

constructing objects on the basis of sensory cues or experience-based expectations—it also 

imposed visual objects that were consistent with the requirements of formal mathematics, 

then attending to these algebraic sub-expressions would be one way for our perceptual 

systems to accomplish aspects of algebraic reasoning without recourse to abstract, symbolic 

mental representations.  By perceiving algebraic elements that are closer together in a 

hierarchical structure as a unified, perceptual object, one could transform the conceptual task 

of verifying algebraic validity into the perceptual task of checking that transformations do 

not violate algebraic objects.  

1.2 Current study 

To investigate whether people competent in algebra impose perceptual objects on 

algebraic expressions, we adapted the property verification paradigm used previously to 

demonstrate object-based attention (e.g., Baylis & Driver, 1992; Zemel et al, 2002).  

Participants were first evaluated for mastery of the basic rules that govern the hierarchical 



Marghetis, T., Landy, D., & Goldstone, R. L. (in press). Mastering algebra retrains the visual system to 
perceive hierarchical structure in equations. Cognitive Research: Principles and Implications. 

9 

structure of algebra (i.e., order of operations).  They were then tested for object-based 

attention within algebraic expressions (e.g., w + a × c + f).  On each trial, two adjacent 

variables changed color, from black to either blue or red, and participants had to determine 

whether these variables had the same color or different color.  If visual objects are 

constructed based on the expression’s hierarchical structure, then color verification should 

be facilitated when performed within an algebraic sub-expression (i.e., variables separated by 

multiplication), compared to when performed between sub-expressions (i.e., variables 

separated by addition).  Moreover, this within-object advantage should occur only among 

those participants who have mastered the rules that generate the hierarchical structure of 

algebra.  To investigate whether retraining the visual system modulates algebraic 

performance, we also tested participants on a purely mathematical task: evaluating the 

algebraic equivalence of two expressions.  If, after participants master the syntax of algebra, 

their visual system is retrained to play a functional role in algebraic reasoning, then object-

based attention for algebraic sub-expressions should improve performance in algebraic 

reasoning.  

2 Methods 

Following Simmons, Nelson, and Simonsohn (2012), we declare that we report how 

we determined our sample size, all data exclusions, all manipulations, and all measures.  All 

experimental procedures were approved by the university’s Institutional Review Board 

(0804000155).  None of the authors have any competing interests in the manuscript. 
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Figure 1: Object-based attention for perceptual and algebraic objects.  (A) Visual 
property verification (e.g., same or different color?) is facilitated when visual elements appear 
to belong to the same (top) rather than different (bottom) objects.  (B) The syntax of 
algebra produces hierarchically organized sub-expressions (illustrated by dotted rectangles).  
(C) Trials began with the presentation of an expression (left).  On Color Verification trials 
(top-right), two adjacent variables changed to either red or blue; participants decided whether 
the colors were the same or different.  If the hierarchical structure of algebra elicits object-
based attention, verification should be facilitated within algebraic sub-expressions (e.g., c and 
f) rather than between them (e.g., c and a).  On Algebraic Equivalence trials, a second 
expression—created by permuting the original expression—appeared to the right, and 
participants decided whether the expressions were algebraically equivalent.  Half the 
permutations produced expressions that were equivalent—for instance, swapping variables 
separated by multiplication (middle-right), which is both commutative and the higher-
precedence operation.  The other permutations produced expressions that were not 
equivalent—for instance, swapping variables separated by addition (bottom-right), the lower-
precedence operation.    

w × a + c × f w × c + a × f=

w × a + c × f w × a + c × f a × w + f × c=

w × a + c × f

w × a + c × f

A B

C

(3000ms)
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2.1 Participants 

Volunteer adults (n = 150, Mage = 20 years; 73 men, 71 women, 6 other gender) participated 

online in return for partial course credit.  Sample size was determined in advance based on a 

pilot study (n = 30), using the same procedure as in the current study, which found object-

based attention within algebraic sub-expressions (p < .05), with evidence for this effect only 

among participants who had mastered the syntax of algebra (Bayes Factor BF10 < 1 for 

participants who had not mastered algebraic syntax).  Based on the effect size of the 

interaction in this pilot (ηp
2 = .02), a sample size of n = 135 would have a power of .95 to 

detect the interaction between Algebraic Term and Syntax Knowledge (Faul et al, 2007).   

2.2 Materials  

Expressions were displayed on a computer monitor in a monospaced, sans-serif, 

black font.  They consisted of four variables separated by arithmetic operations, either 

multiplication or addition (Fig. 1C).  The symbol for multiplication was created by rotating 

the addition symbol by 45º.  On each trial, variables were represented by a random selection 

of unique letters from the Roman alphabet—excluding three letters that resemble numerals 

(i, l, and o) and one that resembled the multiplication symbol (x).  Expressions had two 

possible formats: one with multiplication in the center and additions on the outside, and the 

other with addition in the center and multiplications on the outside.  This assured that both 

arithmetic operations appeared equally in every position within the expressions. 

On Algebraic Equivalence trials, initial expressions were joined by a rearranged 

version, which appeared to the right of an equals sign (Fig. 1C; see Procedure, below).  
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Following Landy and Goldstone (2007a), this second expression was created by applying one 

of eight possible permutations to the first expression.  Half of these permutations produced 

expressions that were equivalent algebraically to the original; the rest produced expressions 

that were not (Fig. 1C).   

2.3 Procedure 

Participants were first evaluated for their knowledge of the order of precedence for 

arithmetic operations (“Syntax Knowledge”).  Two arithmetic problems with both addition 

and multiplication (e.g., 4 + 3 × 2 + 1) were followed by four alternatives.  One alternative 

was the correct solution, obtained by performing multiplication before addition (e.g., 11).  

Other alternatives included the solution obtained if addition were performed before 

multiplication (e.g., 21) and the solution obtained if operations were completed from left to 

right (e.g., 15).  Participants were considered “Syntax Knowers” if they answered both 

questions correctly, and “Non-Knowers” otherwise.   

Participants then completed the main experimental trials, which involved one of two 

tasks, assigned randomly on each trial: Color Verification or Algebraic Equivalence.  All trials 

began with the presentation of an algebraic expression, just left of the display’s midline.  The 

Color Verification task was modeled after the paradigm used by Zemel et al (2002) to study 

object-based attention in a purely visual context.  On Color Verification trials, 3000ms after 

the initial appearance of the algebraic expression, two adjacent variables changed color from 

black to blue or red (Fig. 1C).  This cued participants to determine whether the colored 

variables were the same color (e.g., both red) or different colors (e.g., one red, one blue).  

Color Verification trials were used to measure object-based attention.  On Algebraic 

Equivalence trials, the presentation of the initial algebraic expression was followed after 
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3000ms by the appearance of a second expression, separated from the first expression by an 

equals sign (Fig. 1C).  This cued participants to determine the algebraic equivalence of the 

left- and right-side expressions.  On both Algebraic Equivalence and Color Verification 

trials, participants responded by pressing the ‘p’ (same/ equivalent) or ‘q’ (different/ non-

equivalent) keys.  Participants were instructed to respond as quickly and accurately as 

possible, had up to ten seconds to respond, and received immediate feedback after incorrect 

responses.  They completed 336 trials ordered randomly over four blocks, each consisting of 

12 Algebraic Equivalence and 72 Color Verification trials.   

After completing the main experimental trials, participants reported their age and 

gender and responded to a series of questions about their mathematical abilities: 

mathematics anxiety (from 1 to 10); whether they had completed a college course on finite 

mathematics (e.g., combinatorics); and their score on the quantitative section of the SAT 

(which very few participants remembered).  No other measures were collected. 

2.4 Analysis 

For Color Verification trials, Signal Detection Theory (Green and Swets, 1966) was 

used to analyze perceptual sensitivity while controlling for potential response biases.  Pilot 

results indicated that the effect of object-based attention, in this paradigm, was most 

pronounced in perceptual sensitivity rather than reaction time2.  After removing trials where 

                                                

2 Exploratory analyses of the current study, suggested by reviewers, hints at one possible 

explanation for this: Syntax Knowers’ reaction times were less variable, p = .01. Thus, any 

evidence of object-based attention in reaction times would have been compressed in exactly 



Marghetis, T., Landy, D., & Goldstone, R. L. (in press). Mastering algebra retrains the visual system to 
perceive hierarchical structure in equations. Cognitive Research: Principles and Implications. 

14 

participants did not respond (<1%), discriminability (d’) was calculated for each participant, 

Algebraic Term (within vs. between algebraic sub-expressions), and Expression Format (either 

“v1 + v2 × v3 + v4” or “v1 × v2 + v3 × v4”).  Since many participants had perfect discrimination 

in at least one condition (n = 93), 0.25 was added to all cells of the signal detection matrix to 

correct for infinite estimates of discriminability (Brown & White, 2005).  Main results were 

confirmed by analyses of accuracy (see Appendix).   

Analyses were conducted in the R software package (R Core Team, 2015).  

Hierarchical (i.e., mixed-effects) models were fit with the lme4 package (Bates et al, 2015).  

All predictors were centered.   P-values for fixed effects were calculated using Satterthwaite 

approximations (Kuznetsova, Brockhoff, & Christensen, 2015).  Participants were removed 

for below-chance performance on Algebraic Equivalence trials (n = 16) and for poor 

accuracy (<75%) on Color Verification trials (n = 10).  Including all participants did not 

change the pattern or statistical significance of the main results. 

3 Results 

Accuracy was high on both tasks (Mcolor = .96, Mvalidity = .81).  

Discriminability (d’) on Color Verification trials was analyzed in a mixed ANOVA, 

with a between-subjects factor of Syntax Knowledge (i.e., knower vs. non-knower), and within-

subjects factors of Expression Format (“v1 + v2 × v3 + v4” vs. “v1 × v2 + v3 × v4”) and 

Algebraic Term (within vs. between algebraic sub-expressions).  The only effect that 

approached significance was the highly significant interaction between Algebraic Term and 

                                                                                                                                            

that subset of participants who were predicted to show the largest effect. There was no such 

compression in discriminability.  
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Syntax Knowledge, F(1,122) = 9.29, p = .003 (all other ps > .25).  This medium-sized effect (ηp
2 

= .07) was driven by two opposing simple effects.  Syntax Knowers (n = 78), who know that 

multiplication has algebraic precedence over addition, had better perceptual discriminability 

within algebraic terms, that is, when variables that changed color were separated by 

multiplication rather than by addition, t77 = 2.1, p = .036, Cohen’s d = 0.24.  In other words, 

Syntax Knowers showed a significant “within-object advantage” for algebraic sub-

expressions, in line with their knowledge of hierarchical structure of algebra.  By contrast, 

Syntax Non-Knowers (n = 46) showed the opposite effect, with significantly better 

discriminability when variables that changed color were separated by addition, t45 = -2.2, p = 

.033, d = -0.33.  Thus, perceptual discriminability differed between and within algebraic sub-

expressions, modulated by participants’ knowledge of the hierarchical structure of algebra.   

These results were confirmed by a linear mixed-effects model, with fixed effects of 

Algebraic Term, Syntax Knowledge, and their interaction; random effects of Subject and 

Expression Format; and the maximal converging random effects structure, which had all 

random intercepts and slopes, uncorrelated (Barr et al, 2013).  Once again, there was a 

significant interaction between Algebraic Term and Syntax Knowledge (b = 0.25, t = 2.7, p = 

.007), and this full model was significantly better than a reduced model without the 

interaction (χ(1) = 4.6, p  = .03).  No other effects were significant (p  > .85). 
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Figure 2: Object-based attention for algebraic sub-expressions.  Perceptual 
discriminability was modulated by whether perceptual comparison occurred within an 
algebraic sub-expression (i.e., variables separated by multiplication) or between algebraic sub-
expressions (i.e., variables separated by addition).  For Syntax Knowers, who exhibited 
mastery of the rules governing the hierarchical structure of algebra, discriminability was 
significantly better within algebraic sub-expressions.  By contrast, Non-Knowers showed the 
opposite effect: better discriminability when comparing variables that were separated by 
lower-precedence addition.  (Error bars show SEM; *, p < .05; **, p < .01.) 
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3.1 Relations to algebra performance  

We next investigated whether object-based attention during Color Verification trials 

predicted algebraic performance.  If mathematically competent undergraduates rely on 

retrained object-based attention to parse algebraic expressions, then participants who 

exhibited a greater within-term advantage on Color Verification trials should be better at 

determining algebraic equivalence.  We thus calculated, for each participant, a measure of 

object-based attention on Color Verification trials, by subtracting mean d′ on between-term 

comparisons, from mean d′ on within-term comparisons.  This measure is more positive 

when discriminability is better for comparisons performed within (vs. between) algebraic 

term.   

First, we verified that Syntax Knowledge facilitated performance on the Algebraic 

Equivalence task.  As expected, participants who had mastered the rules governing order of 

operations (i.e., Syntax Knowers) were better at evaluating algebraic equivalence (M = 83.2% 

vs. 76.6%), t122 = -2.5, p = .01, Cohen’s d = .47.  To confirm that Syntax Knowledge made a 

unique contribution to algebra performance, we analyzed trial-by-trial accuracy with a mixed-

logit model that included additional fixed effects for available control measures: standardized 

mathematics anxiety; whether participants had completed college finite mathematics; and, to 

control for overall engagement, standardized mean accuracy on the Color Verification trials3.  

The random effects structure was the maximal converging structure motivated by the design, 

with random effects of Subject and Equation Format, random intercepts, and all random 

                                                

3 SAT scores were not included because so few participants (< 25%) reported their score.  
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slopes (Barr et al, 2013).  Both anxiety (β = -0.22 ± .09 SEM, p = .016) and performance on 

Color Verification trials (β =.42 ± .09 SEM, p < .001) were significant predictors of accuracy 

on Algebraic Equivalence trials.  Even after controlling for these factors, however, Syntax 

Knowledge still predicted algebra performance, b =.41 ± .20 SEM, p = .036. 

We next investigated whether object-based attention also facilitated judgments of 

algebraic equivalence.  To the full mixed-logit model of algebra accuracy, we added the 

measure of participants’ object-based attention, its interaction with Syntax Knowledge, and 

all associated random slopes.  Once again, both anxiety and performance on Color 

Verification trials predicted algebra performance (both ps < .01), as did Syntax Knowledge (p 

= .045).  The only other significant predictor was the interaction between Syntax Knowledge 

and object-based attention, b = 1.2 ± 0.42 SEM, p = .006 (Fig. 3).  Follow-up subset analyses 

found that, while Syntax Non-Knowers were overall worse than Knowers at judging 

algebraic equivalence, their performance was unrelated to their object-based attention (p = 

.17).  For the higher-performing Syntax Knowers, by contrast, object-based attention was a 

highly significant predictor of success in judging algebraic equivalence, b = .68 ± 0.26 SEM, 

p < .01.  Thus, there was evidence that judging algebraic equivalence—a purely mathematical 

task—was supported by object-based visual attention, but only among those participants 

who had mastered the basic hierarchical structure of algebra (i.e., Syntax Knowers).  Indeed, 

among Syntax Knowers, our measure of object-based attention accounted for nearly 10% of 

the variance in participants’ mean accuracy, even after controlling for mathematics 

education, mathematics anxiety, and overall task engagement. 
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Figure 3: Object-based attention for algebraic sub-expressions predicts algebra 
performance.  Participants’ within-object advantage in discriminability (horizontal axis) was 
used as an index of object-based attention for algebraic sub-expressions.  For Syntax Non-
Knowers (right panel), object-based attention was unrelated to algebra task accuracy (vertical 
axis).  For Syntax Knowers (left panel), by contrast, algebra performance improved with 
increasing object-based attention.  Dots represent individuals.  Black lines show lines of best 
fit that illustrate the relation between individuals’ within-object advantage and their mean 
accuracy on the algebra task.  Density plots show marginal densities for object-based 
attention (top) and accuracy on Algebraic Equivalence trials (right). 
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4 Discussion 

We investigated the hypothesis that the visual system is retrained to perceive the 

hierarchical structure of algebraic expressions, reducing high-level algebraic reasoning to 

basic perceptual processes.  As predicted, participants who had mastered the hierarchical 

structure of algebra exhibited object-based attention for algebraic sub-expressions (i.e., 

variables around a higher-precedence operation).  In addition, the extent of their object-

based attention for within algebraic expressions predicted their performance on a purely 

mathematical task, with performance improving as object-based attention increased.  This 

was not the case for participants who had not yet mastered the hierarchical structure of 

algebra: they did not exhibit object-based attention for algebraic structure, and their algebraic 

performance was unrelated to their perceptual processing.  Taken together, these results are 

consistent with the hypothesis that mathematical expertise involves, at least in part, recycling 

processes in the visual system to create structured groups that honor the hierarchical 

structure of algebra. 

Why, for some participants, was perceptual discriminability actually better between 

algebraic sub-expressions than within? Most of these participants were Syntax Non-

Knowers.  Some of these individuals may have the order of precedence exactly wrong, 

solving addition first—perhaps because it is easier—and only afterwards moving to 

multiplication.  Past studies have found that a full third of college students struggle to apply 

the correct order of operations (Pappanstos, Hall & Honan, 2002; see also Glidden, 2008).  

Perhaps more likely, the addition symbol may attract attention for purely visual reasons (e.g., 
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it consists of lines that are vertical and horizontal, rather than slanted) or because it is more 

familiar, comfortable, and comprehensible, particularly for lower-performing individuals.  

Indeed, extensive early experience with addition may train the visual system to perceive sums 

as wholes, an early bias that must be overridden by later algebraic training. 

A between-object advantage, however, was found even among some Syntax 

Knowers—including a few who performed quite well on the Algebraic Equivalence task.  

Some of this is presumably just noise; no behavioral index of object-based attention is going 

to be a perfect measure of perceptual processing.  But this is also a good reminder that there 

are multiple routes to mathematical success.  It is unlikely that every competent reasoner is 

going to rely on the same visuospatial perceptual strategy; some may even rely entirely on 

rote, explicit, linguistically-encoded knowledge of the order of operations (e.g., recalling the 

abbreviation PEDMAS: Parentheses, then Exponents, then Division and Multiplication, 

then Addition and Subtraction).  Object-based attention for algebraic structure, therefore, 

may take time to develop, emerging only after mastering algebraic syntax.  For some, 

perceptual processes may always be overshadowed by complementary strategies. 

Previous work has demonstrated object-based attention for concrete objects inferred 

from sensory cues (Duncan, 1984), and expectations that reflect past perceptual experience 

(Zemel et al, 2002).  The current study extended this phenomenon to objects established on 

the basis of abstract relations and conceptual knowledge.  In some ways, this is reminiscent 

of the holistic perception of written words (Ehri, 2005).  Skillful readers retrain their visual 

system so they see written words as wholes, not collections of individual letters.  Holistic 

word perception, however, still depends primarily on a sensory cue—the space between 

words—or past exposure to that particular word-form.  This is sometimes true for algebraic 
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notation, too, where algebraic precedence is associated with spatial proximity.  Often, 

however, the hierarchical structure of an expression is not readily apparent from visual 

inspection alone.  In the current study, for instance, addition and multiplication were spaced 

equally, minimizing any sensory cues indicating which variables belong together.  

Furthermore, during reading, only specific combinations of letters form legitimate words.  In 

algebra, by contrast, new variables can be combined productively to create novel sub-

expressions; indeed, in the current study, letters were chosen randomly from the alphabet, 

generating combinations that participants may have never before encountered.  Despite this 

productive novelty, algebraic sub-expressions were perceived as unified visual objects.  

These visual objects could only have been constructed on the basis of the formal rules 

governing algebraic syntax.  Basic perception was reshaped by high-level conceptual 

knowledge.  

4.1 The nature of mathematical expertise 

The current results suggest that relying on visual processing might be a boon, not a 

barrier, to mathematical reasoning.  This might come as a surprise.  Confronted with 

evidence of students’ reliance on misleading, superficial visual strategies in algebra, some 

have argued that mathematical training should avoid and even suppress perceptual strategies 

(e.g., Kirshner, 1989; Kirshner and Awtry, 1994).   For example, asked to solve 4+4/2+2, 

some students might be led to answer “2,” incorrectly, because of the superficially tempting, 

perceptually strong 4+4 and 2+2 groups.  Indeed, we sometimes found evidence for 

perceptual grouping around addition, rather than multiplication, particularly among 

participants who had yet to master the hierarchical syntax of algebra.  But the fact that 

novices use perceptual strategies to arrive at incorrect answers does not imply that experts 
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abandon such strategies entirely.  Instead, experts may refine those perceptual strategies so 

that they become reliable, robust, and rapid routes to correct solutions (Goldstone, Landy, and 

Son, 2010; cf., Hutchins, 1995, and Rumelhart et al, 1986).  In line with this, participants 

who had mastered the hierarchical syntax of algebra also exhibited object-based attention for 

algebraic sub-expressions.  Mathematical expertise, therefore, might be better thought of as 

the skillful deployment of perception.   

Thus, the mathematical expert is made more expert, on the one hand, by mastering 

clever notations in which conceptual relations are presented perceptually and, on the other, 

by retraining their visual system to perform some aspects of algebraic reasoning.  Both this 

perspective on mathematical practice and its resistance have a long heritage.  To quote 

Whitehead (1911, p. 61) yet again: “It is a profoundly erroneous truism, repeated by all copy-

books and by eminent people when they are making speeches, that we should cultivate the 

habit of thinking what we are doing.  The precise opposite is the case.  Civilization advances 

by extending the number of important operations which we can perform without thinking 

about them.”  The resistance continues to this day. New Mathematics was a relatively recent, 

and particularly controversial, movement in education that attempted to foreground the 

“important operations” of mathematics, at the expense of procedural mastery (Adler, 1972).  

But one implication of our perspective is that mathematical training might be better spent 

encouraging students to adapt—not abandon—their perceptual grouping processes. Instead 

of minimizing students’ reliance on perceptual strategies (Kirshner, 1989; Kirshner and 

Awtry, 1994), education should aim to refine students’ use of perception and action, so that 

they rig up their perception and action systems like mathematical experts.  This could take 

the form of explicit instruction on how the visuospatial layout of algebraic equations 
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contains hints to the hierarchical relations that they represent.  Additionally, future curricula 

or tools could intervene in targeted ways on the embodied routines that contribute to 

mathematical expertise, taking advantage of decades of research on perceptual and motor 

learning (Goldstone et al, under revision; Ottmar & Landy, in press).  

Regardless of what we do as teachers, children pick up on the perceptual regularities 

of their environments, implicitly developing perceptual associations and routines.  These can 

become obstacles, such as when children interpret the visual form of the equals sign as a cue 

to calculate, hindering learning in early algebra (McNeil, 2008).  But they can also offer long-

term benefits, such as the perceptual strategy documented in the current study.  We imagine 

a future where computer-based tools will systematically manipulate the visual and interactive 

features of mathematical representations so that children pick up on the perceptual 

regularities that help, rather than hurt (e.g., Weitnauer, Landy, and Ottmar, 2016).  

Of course, perception alone is insufficient to account for all of mathematical 

reasoning.  However, we suspect it is a critical part of the larger, distributed system that 

accomplishes mathematics, a system in which resources within the skull are brought into 

coordination with resources outside (e.g., gestures, inscriptions), skillfully soft-assembled to 

respond to the situated demands of the task (Clark, 2008).  These sundry resources are often 

“embodied,” from neural circuits that evolved for perceiving and acting, to the fleshy hands 

that do the literal “manual labor” of mathematics (Marghetis, Edwards, and Núñez, 2014).  

For example, brain circuits that evolved for perceiving motion or shifting attention are 

redeployed to support mathematical skills like symbolic arithmetic, where attention is shifted 

along a simulated number-line (Knops et al, 2009; Marghetis et al, 2014; McCrink, Dehaene, 

and Dehaene-Lambertz, 2007), or solving equations, where terms are imagined to move 
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across the equals sign (Goldstone, Landy, and Son, 2010).  Our bodies, too, are disciplined 

by mathematical training.  When a mathematical expression is examined, eye movements 

respect the expression’s hierarchical structure, starting with the highest-precedence operation 

and moving sequentially to gradually lower-precedence operations (Landy et al, 2008; 

Schneider et al, 2012).  And while gestures can shape children’s early mathematical 

knowledge (Goldin-Meadow, Cook, and Mitchell, 2009), even experts gesture spontaneously 

to express their mathematical understanding (Marghetis and Núñez, 2013).  A complete 

understanding of mathematical cognition requires that we study mathematics as it is actually 

accomplished, as an embodied practice: eyes darting across the blackboard, hands scribbling 

away.  

4.2 The widespread role of regimented perception 

While the current study has focused on retraining our perceptual apparatus to 

perform algebraic reasoning, mathematics is full of other practices that also likely depend on 

the regimentation of perception.  Visual proofs in Euclidean geometry are unreliable when 

treated naively as exact depictions, but the expert geometer learns to ignore those 

diagrammatic features that could lead to invalid conclusions (e.g., exact length) while 

perceiving those features that can make valid contributions to a proof (e.g., containment; 

Manders, 2008).  And this is not restricted to high school mathematics.  Category Theory, a 

branch of modern mathematics, relies on a proof technique known as “diagram chasing” 

that relies entirely on the creation and interpretation of diagrams in which spatial location 

indicates mathematical relations.  Indeed, visuospatial ability is significantly greater among 

professional mathematicians compared to non-mathematicians, and it completely mediates 

the relation between basic numerical abilities and the attainment of advanced mathematical 
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expertise (Sella, Sader, Lolliot, and Cohen Kadosh, 2016). Thus, while algebra has been our 

case study, we propose that mathematics more generally depends for its accomplishment on 

the cultural regimentation of our perceptual apparatus.   

And this may be an even more general phenomenon, with regimented perception 

playing a role in the reproduction of many, if not most, sociocultural systems.  Biases in face 

perception, of instance, may contribute to the reproduction of structural racism: implicit 

racial biases, which shape the perception of facial emotions (Hugenberg and Bodenhausen, 

2003), can influence split-second decisions by law enforcement about whether or not to 

shoot a suspect (Correll et al, 2007), thus reproducing structural inequalities in safety and 

policing.  Marx even argued that a similar process of regimented perception contributes to 

the reproduction of capitalist society as a whole, such that we learn to see the world in terms 

of objects to be owned (Marx, 1844: 107).  Thus, the cultivation of highly disciplined ways of 

seeing and acting may be a critical mechanism by which we reproduce immense sociocultural 

systems (Bourdieu, 1977), from structural inequality to the inferential structure of 

mathematics.  

5 Conclusion 

Let us return to the puzzle with which we began: why is mathematical practice so 

thoroughly perceptual?  Our answer is that the mathematical expert need not abandon a 

reliance on perception.  Perception is not an obstacle to abstraction.  On the contrary, 

culturally-regimented perception is the engine of expert mathematical reasoning.  In 

particular, high-level algebraic reasoning is accomplished by basic perceptual processes that 

are adapted to reflect abstract conceptual knowledge.  Difficult conceptual tasks are thus 

transformed into robust perceptual ones.  This exemplifies a strategy that recurs throughout 



Marghetis, T., Landy, D., & Goldstone, R. L. (in press). Mastering algebra retrains the visual system to 
perceive hierarchical structure in equations. Cognitive Research: Principles and Implications. 

27 

human cognition: perception and action are rigged up so that “the senses have therefore 

become directly in their practice theoreticians” (Marx, 1844: 107).  
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Appendix: Confirmatory Analyses of Accuracy 

In addition to analyzing discriminability, which controls for any response bias, we 

also further confirmed all main findings with analyses of accuracy. Accuracy on Property 

Verification trials was analyzed with a mixed-logit model, with fixed effects of Algebraic 

Object, Syntax Knowledge, and their interaction; random effects of Subject, Equation 

Format, and Comparison Location (first, second, or third location with the expression); and 

the maximal converging random effects structure, which had all random intercepts and 

slopes, uncorrelated. The only significant effect was once again the interaction between 

Algebraic Object and Syntax Knowledge, b = 0.51, z = 2.1, p = .03. Follow-up subset 

analyses revealed that Syntax Knowers were significantly more likely to be correct if they 

were judging colors within a multiplication object (M = 97% vs. 96%), b = 0.19, z = 2.16, p = 

.03. Syntax Non-Knowers, by contrast, were marginally more likely to be correct within an 

addition object (M = 97% vs. 96%), b = -0.30, z = -1.89, p = .06.  


