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Abstract 

 Learning algebra is difficult for many students, in part due to an emphasis on the 

memorization of abstract rules. Algebraic reasoners across expertise levels often rely on 

perceptual-motor strategies to make these rules meaningful and memorable. However, in many 

cases, rules are provided as patterns to be memorized verbally, with little overt perceptual 

support. Although most work on concreteness focuses on conceptual support through examples 

or analogies, we here consider notational concreteness—perceptual/motor supports that provide 

access into the dynamic structure of a representation itself. We hypothesize that perceptual 

support may be maximally beneficial as an initial scaffold to learning, so that later static symbol 

use may be interpreted using a dynamic perspective. This hypothesis meshes with other findings 

using concrete analogies or examples, which often find that fading these supports over time leads 

to stronger learning outcomes. In an experiment exploring this hypothesis, we compare gains 

from the fading out of dynamic concrete physical motion of symbols during instruction with the 

introduction of motion over the course of instruction. In line with our theoretical perspective, 
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concreteness fading led to significantly higher achievement than concreteness introduction after 

Day 2 of the intervention. 

 Algebraic notation is a foundational domain for understanding all areas of advanced 

mathematics, for developing critical thinking skills, and for preparation in a wide variety of 

careers. Despite the emphasis on algebra during middle and high school, many students struggle 

to achieve a basic understanding of algebraic formalisms such as equations (Koedinger, Alibali, 

& Nathan, 2008). In the 2011 National Assessment of Educational progress, 27% of eighth 

graders scored below the basic level in mathematics and only 34% reached proficient or 

advanced levels (National Center for Education Statistics, 2011). 

Much difficulty in algebra learning stems from failure to achieve a robust, fluent, procedural 

understanding of the structure, arrangement, and legal transformations of an algebraic 

expression. Many students struggle to understand the basic principles of algebraic notation when 

they encounter them (Bernardo & Okagaki, 1994; Martin & Bassok, 2005), have difficulty 

converting between formal expressions and other representations and real situations (Koedinger 

& Nathan, 2004; Lochhead & Mestre, 1988), and often don’t know what transformations are 

legal and appropriate (Marquis, 1988). The National Mathematics Advisory Panel concluded in 

2008 that “[Many students] have difficulty grasping the syntax or structure of algebraic 

expressions and do not understand procedures for transforming equations or why transformations 

are done the way they are”. Students often memorize abstract rules, which may not lead to the 

internalization of algebraic notation and may cause students to overgeneralize rules because of 

visual similarity (Kirshner & Awtry, 2004; Marquis, 1988). The panel concluded, furthermore, 

that students have difficulty simply reading, writing, and transforming formal expressions. 
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Because advanced topics such as physics, statistics, and calculus often make extensive use of 

algebraic notation, these struggles make it almost impossible to understand advanced STEM 

concepts, and these difficulties are compounded as equations become more complex. 

We can generally distinguish among multiple kinds of inscriptions people make in the course of 

mathematical reasoning. We are particularly interested in formal inscriptions, or formalisms, 

which we take to be conventional inscriptions using a fixed alphabet of symbols, and well-

defined rules of interpretation, as well as a clearly defined system for instantiating variables and 

substitution. Formalisms play a critical role in algebraic reasoning, beginning especially with the 

most famous formalism, algebraic notation—the familiar system of equations, expressions, 

variables, and operators. Although formal manipulations are only part of understanding algebra, 

and although many concepts may be best initially learned when taught without formal 

inscriptions using examples and concrete reasoning (Nathan, 2012), equations continue as a core 

representation across the STEM disciplines. 

Given its importance and the difficulties that students exhibit, it is important to explore new 

ways to approach instruction and pedagogy related to teaching algebraic structure. Our general 

approach is to explore the role of explorable, dynamic symbols rendered in computer algebra 

systems. At this point, it is not clear whether such tools can be useful methods for imparting 

mathematics at all, and, if so, how they may best be used in conjunction with traditional 

symbolic instruction. As such, the primary aim of this study is to examine the effects of Pushing 

Symbols, a novel approach to teaching algebraic structure that utilizes perceptual-motor routines, 

on mathematics learning. In particular, we contrast two situations: one in which dynamic 
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symbols precedes traditional instruction on a particular topic, and another in which they follow 

it. 

Perceptual-Motor Routines and Mathematics 

Understanding 

Substantial empirical evidence demonstrates that perceptual-motor routines are also an important 

component of algebraic reasoning. For example, Ullman (1984) articulated the idea that visual 

processing frequently relies on assemblages of a limited set of ‘visual routines’: shifting attention 

to a region or object, mentally rotating or scaling a space, tagging elements for later tracking, 

grouping elements according to gestalt principles or deliberate action, and so on. This idea has 

been applied many times to mental rotation, diagrammatic reasoning (Bannerjee & 

Chandrasekharan, 2004), perception in the world (Hayhoe 2000; Pylyshyn, 2000; Rao & Ballard, 

1995), and visual search (Horswill, 1995). Though visual routines were articulated first and have 

been the focus of most attention, similar approaches can be applied to motor programs and other 

sensory systems; thus we here use the general term perceptual-motor routines. 

In applying this concept to formal algebra, we further leverage the notion of neural reuse 

(Anderson, 2014, 2015; Dehaene, 2007). The general idea of neural reuse is that skills and 

abilities that are typically associated with one mental domain or content may be applied to a new 

domain over cultural or evolutionary time scales, especially when cultural tools facilitate that 

cooption (Anderson, 2014; Landy, Allen & Anderson, 2011). On this account, part of the power 

of formal systems is the way they typically afford perceptual-motor routines: routines that deploy 
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or instantiate conceptual and procedural knowledge, but which are themselves coded in 

perceptual-motor processing systems. 

Substantial empirical work has demonstrated that notation reading and manipulation involves not 

just memorizing explicit rules, but also learning appropriate perceptual routines (Goldstone, 

Landy, & Son, 2010; Kirshner, 1989; Maruyama, Pallier, Jobert, Sigman, & Dehaene, 2012). 

Successful reasoners in mathematics often view algebraic expressions as structured, physical 

objects (Dörfler, 2006; Kellman, Massey, & Son, 2010; Landy & Goldstone, 2007a; Radford & 

Puig, 2007; Wittgenstein, 1922), or depictions of such objects, and use visual routines over those 

perceptions to solve mathematical problems. Practically, to understand algebraic notation, 

students should visualize expressions as composed of multiple parts or objects (CCSSI-M, 2010) 

and categorize these objects based on their mathematical functions. In addition to this object-

based metaphor, rigid motion is a powerful perceptual grouping mechanism that could be a 

strong tool if engaged while learning algebraic structure (Kilpatrick, Swafford, & Findell, 2001). 

Motion and visual patterns are intuitive in mathematics (Dörfler, 2006). Students may better 

recognize the construction of algebraic notation if they dynamically transform expressions using 

physical manipulation and perceptual training (Kellman et al., 2008; Kirshner & Awtry, 2004; 

Maruyama et al., 2012). Indeed, this pictorial approach to algebra seems to have its roots in the 

very beginnings of algebraic notation (Heeffer, 2013). 

Although it is perhaps common to think of a mathematical derivation as a sequence of written 

elements, perceptual-motor routines that act on these written elements normally track motion 

over time. We refer to these processes that normally track continuous real-world motion as 

dynamic processes, and to systems that instantiate that motion as dynamic interactions. An apt 
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analogy is that we treat standard mathematical notation as something like a comic strip, which 

uses static positions at different time points to represent an underlying continuous process. That 

process is itself dynamic, as would be a physical model of that process (a film, composed of a 

large number of static images which are perceived continuously, perhaps represents an 

intermediate case). 

Consider the brief derivation shown in Figure 1. There are two reasonable perspectives (at least!) 

on this derivation: one can certainly treat it as a sequence of four lines, which are licensed by 

particular entailment relationships. That is, given that the first line is true, the second line is also 

true. Given the first two lines, the third follows, etc. In this sense, the relationship between one 

line and the next is one of truth of the full utterance. However, one can also see this derivation as 

a sequence of actions taken over objects, sub served by particular perceptual routines. Getting 

from the second to the third line, for instance, involves the translation of the “+3y” right ward, 

and the transformation of the “+” into a “-“. The third line turns into the fourth when the “3y” 

and the “-3y” meet and annihilate, leaving behind a 0. This conceptualization is ubiquitous in our 

language, in which we talk about “moving the 3y to the other side”, “changing the sign”, or 

“canceling” terms. The perceptual-motor routines perspective underlying our work suggests, 

further, that the actual processes implementing this sort of reasoning are often themselves 

perceptual in character. 

Concreteness Fading versus Concreteness Introduction 

 Of interest to this line of research is the comparative utility of concrete and abstract 

instructional designs when introducing algebraic concepts and formalisms. Traditionally, 
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formalisms are often introduced early and tend to be followed by examples, even though for 

learners this path is often fraught and difficult. The current research focuses on formalisms, but 

uses two different approaches to teach them. One is akin to the traditional formal approach, 

while the other (which we’ll call the concrete approach) focuses on using perceptual-motor 

training and gestures (in the user interface sense) to teach the symbols-as-objects framework. 

Although the formal approach is most common, it is plausible that once a symbols-as-objects 

framework has been thoroughly internalized, students may be better able to apply explicitly 

stated rules and formalisms. Experts and novices in mathematics have consistently been shown 

to treat symbols as physical, both in their metaphorical language (Marghetis & Núñez, 2013; 

Nogueira de Lima & Tall, 2008), and also in the kinds of psychological processes used to 

transform and parse them (Kirshner, 1989; Landy & Goldstone, 2007b; Marquis, 1988; 

Maruyama et al., 2012). We take it as assumed that both formal and concrete approaches have 

some plausible value, and consider here the relative order of introduction. 

 Concrete instruction that integrates perceptual experiences of new concepts may aid 

learning by activating real-world knowledge structures and increasing learner engagement 

(Goldstone & Son, 2005; McNeil & Fyfe, 2012). However in some cases, abstract instruction, 

which utilizes more arbitrary referents, may be more beneficial in generalizing concepts to novel 

systems, perhaps by removing the distracting or context-specific elements of concrete materials 

that may be irrelevant to the underlying concept (Goldstone & Sakamoto, 2003; Kaminski, 

Sloutsky & Heckler, 2009). A possible solution to this paradox is the process of concreteness 

fading—a shifting from concrete to abstract representations in instruction (Bruner, 1966; Fyfe, 

McNeil, Son, & Goldstone, 2014; Goldstone & Son, 2005; McNeil & Fyfe, 2012). Gradually 
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removing concrete scaffolding and introducing abstract concepts has predicted better 

achievement and retention than entirely abstract or concrete instruction in scientific (Goldstone 

& Son, 2005) and mathematical domains (McNeil & Fyfe, 2012). 

 In this study, we compare relatively concrete and abstract representations of algebraic 

notation. In algebraic notation, the dynamic nature of symbols is only partially captured by a 

proof or derivation—static forms are written in a sequence that reflects a temporal ordering. We 

examine how the order of presenting concrete perceptually-based and static abstract instruction 

might benefit student achievement, retention, and engagement in algebra. We instantiate 

concreteness fading and introduction as whether the reified metaphors of the object-based 

representation of mathematical notation are either presented concretely initially and later 

followed with static representations (fading), or presented after more abstract representations 

(introduction). The “concreteness introduction” approach aligns with the “formalisms-first” 

approach that is commonly used in school algebra classes (Nathan, 2012); symbolic rules and 

transformations are taught first, and perceptual instantiations of those manipulations follow. 

 A coordinating perspective is that of preparation for future learning (PFL) (Bransford & 

Schwartz, 1999). The PFL perspective suggests that when given opportunities to explore and 

generate their own ideas about mathematical concepts in new environments before they are 

presented with more traditional algorithms and content, students can lay conceptual groundwork 

which while not helpful on its own, facilitates learning from more traditional lessons. A primary 

principle of PFL when applied to math and science domains is drawing attention to the 

underlying structure of the mathematics (Schwartz, Chase, Oppezzo, & Chin, 2011). Providing 

dynamic and concrete materials that students can explore when first being introduced to the 
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material and then later removing them and replacing it with more abstract representation using 

algorithms and symbols may enable students to identify and focus in on the underlying 

mathematical structures and features. Our ‘concreteness fading’ condition aligns well with a PFL 

approach: dynamical symbols (described in detail in the next section) are used first, and the rules 

of manipulation are learned formally over static forms second. To be clear, however, no algebra 

approach, including the so-called “formalisms first” approach, typically employs dynamic 

symbols in the way we do. Because of the novelty of this approach, it is probably best to be 

careful translating our results to typical experiments testing the PFL theory or even to other 

instances of concreteness fading. Our intention in this project is to understand better how 

learning works in the context of dynamic symbols, rather than to test the general framework of 

PFL or concreteness fading per se. 

Pushing Symbols 

 Consistent with the perceptual object-based framework discussed earlier, a concrete (yet 

formal) algebra intervention, Pushing Symbols (PS) was developed to embed the symbolism of 

algebra into core perceptual systems in a consistent and productive way (Ottmar, Landy, & 

Goldstone, 2012; 2015). By reifying mathematical symbols as movable physical objects, the 

intervention aims to help students identify algebraic structure, think more flexibly about 

expressions, and realize that transformations can be more dynamic than the static re-copying of 

lines. 

 If transformations of static symbols are internally realized through perceptual-motor 

simulation of continuous motion, the goal of Pushing Symbols is to literally present that 
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continuous motion. Commutativity is realized by physically moving one symbol to the other side 

of another; when factoring 2x+3x into (2+3)x, the common symbols are literally joined and 

placed on top of each other, and put to the right-hand side. In each case, the user initiates some 

action, and that action is completed by automatic responses generated by the program (see Figure 

2). This visualization is intended to literally depict the operation of plausible perceptual routines, 

and in this way to more closely reflect the perceptual routines involved in expert reasoning. 

 In the PS system, motion is concretely presented to the learner, and the learner actively 

engages in manipulating formal expressions with their hands. In PS, students discover dynamical 

versions of formal operations and practice algebraic principles by physically touching objects 

and representations of notation and moving symbols embedded in equations. For example, when 

simplifying the expression 4x+5+2x+3, students can touch the 5 with their finger, pick it up and 

move it to the left of the 3. When they release, it will result in the expression of 4x+2x+5+3. If 

they try to evaluate the middle sum (by tapping on the ‘+’ sign), the system will refuse to 

combine 2x+5. If they tap on either of the other two (a legal operation), the corresponding 

operation is completed. In this way, PS affords learning the learning of algebra through active 

exploration and discovery; in the more structured contexts used here, this feature gives students 

fast feedback regarding common errors. 

 In theory, PS may help build students’ understanding of algebraic concepts by 

internalizing the appropriate way of visualizing patterns in algebraic structure. One plausible 

mechanism is that moving symbols may help the construction of perceptual routines that 

implement formal transformations. It is also plausible that building perceptual routines that 

implement formal transformations will reduce cognitive load (Goldstone, Landy, & Son, 2010; 
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Landy, Allen, & Zednik, 2014). Taken together, this PS intervention may make subsequent 

formal/conceptual instruction more effective. However, to date, no research has been conducted 

to specifically test this theory or evaluate the feasibility or effectiveness of this intervention or 

other dynamic technologies. 

 In the Pushing Symbols approach, visual routines implement much mathematical and 

formal reasoning. This process of constructing visual routines serves to offload rule-based 

manipulation that is often verbally mediated, reducing cognitive load (Landy, Allen, & Zednik, 

2014; Maruyama et al., 2012). We predict that this reduction will make it easier to acquire new 

formal information: that is, if visual processes are explicitly taught early, rather than discovered 

later, overall learning will be facilitated. 

 The PS intervention consists of several classroom instructional activities that aim to teach 

core algebraic concepts, such as distributivity, commutativity, and solving equations, as well as 

basic notational skills, such as the order of operations and simplifying expressions. The 

intervention also aims to use engaging instructional methods and technological tools to increase 

overall performance and interest in the field of mathematics. (Additional details and examples of 

the PS approach are described later in the methods section). 

The Present Study 

 This study aims to compare whether utilizing dynamic concreteness fading within the 

Pushing Symbols intervention is more effective than dynamic concreteness introduction for 

teaching algebraic structure. We manipulated whether students engaged in a dynamic motion-

based lesson with technology before a static lesson (concreteness fading) or a static lesson 
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preceded a dynamic motion-based lesson (concreteness introduction). We hypothesize that 

concreteness fading of motion-based instruction will improve student performance more than the 

concreteness introduction condition. 

Method 

Participants 

  Participants were 98 7th grade students (43.9% male, 56.1% female) from a middle 

school located in a suburban area in the east coast. Students participated in our study during their 

regular math class time. All students obtained parental consent to participate in the study. 

Materials and Procedures 

 In this research design, two intervention forms were compared. Students within classes 

were randomly assigned into one of two conditions: concreteness fading (dynamic first) or 

concreteness introduction (static first). There was no control group per se, since both groups 

received both the dynamic and static lessons. Rather, the difference between groups was due to 

the order and day in which the two lessons were given to students (whether dynamics were faded 

or introduced). The concreteness fading condition received the dynamic lesson on Day 1 and the 

static lesson lacking explicit symbol motion on day 2. The concreteness introduction condition 

received the static lesson on Day 1 and the dynamic lesson on day 2. 
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 The study took approximately 3 hours and occurred over two class periods. On the first 

day, all students were asked to complete a pre-test, including 18 problems on simplifying 

algebraic expressions and a mathematics anxiety and self-efficacy questionnaire. After the pre-

test, students were randomly assigned into two groups and separated into two different rooms 

based on their assigned condition. Students in the fading condition received the dynamic lesson 

first, while students in the introduction condition received the static lesson first. The content of 

the lessons and the time spent on each instructional activity were matched, however, the 

pedagogical practices used in each lesson differed, as described below. At the end of the first 

day, students took an 18-item post-test assessment that evaluated how much they learned during 

the class period and completed an engagement questionnaire. 

 On the second day, the students received the opposite lesson and took a third assessment. 

At this crucial time point of comparison (achievement after day 2), both conditions had received 

both the dynamic and static lessons. Students also completed a second engagement 

questionnaire. A month later, a fourth assessment was given to see how well the students 

retained the information. This retention assessment was identical in form to the other 

assessments. 

 Dynamic Lesson. 

The dynamic lesson began with a 15-minute whole-group lesson on combining like terms, taught 

by the researchers. Dynamic instruction emphasized the commutative property and taught 

students how to physically move around and transpose terms into equivalent expressions. During 

the lesson, a researcher demonstrated how to identify and combine like-terms using color-coded 
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magnets to represent mathematical principles such as numbers, symbols, variables and 

coefficients. These were designed to provide perceptual distinctions that aligned with 

syntactically and transformationally important structures—in this case, like terms. After the 

whole group lesson, students broke into small groups and explored the ideas discussed in the 

lesson by simplifying a series of expressions using colored manipulative tiles that matched the 

magnet system used in the whole group lesson. In this activity, students were asked to 

manipulate the expressions by rearranging the terms and replacing the tiles with equivalent terms 

after performing operations (see Figure 3 for an example). 

 Next, students were given iPads and asked to solve 120 problems on using the Pushing 

Symbols (PS) iPad application over 30 minutes. The PS iPad app provides fast feedback and 

engages perceptual-motor systems through fluid transformations as students touch the screen to 

manipulate expressions (see Figure 2 for sample problem transformations using PS). For 

example, students could touch operator signs to perform calculations and drag terms to different 

places in the expression. The gestures and actions that controlled user interactions were designed 

to be reminiscent of naturally produced gestures and diagrams. Unlike the tiles system, students 

received immediate feedback on the accuracy of their manipulation. The program did not allow 

students to make mistakes- when an error was made, the screen shook at them and required them 

to try again. Students were introduced to the interface through a brief guided problem set. Once 

they completed this introductory level, they were then free to move through the application at 

their own pace. The program included 10 levels with 12 problems increasing in complexity 

within each level. Students received between 1-3 stars for each problem that they completed 
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based on accuracy and speed. Once students received 80% of the stars on a level, the next level 

of 12 problems was unlocked. 

 Static Lesson. 

The static lesson used traditional methods with worked-examples and hand-written solutions. 

During the 15-minute whole group lesson, a researcher taught the targeted content of the 

commutative property and combining like terms using algorithms, static lines, and worked 

examples. Instead of colored magnets, a white board was used to demonstrate how to combine 

like terms and simplify the expression using static lines of written expressions similar to a proof. 

No motion or transposition was used in this lesson. After the lessons, students were broken into 

small groups and completed an activity using uncolored tiles to model the expression and 

demonstrate how to best simplify by performing operations. Rather than physically moving the 

tiles, students replaced tiles one operation at a time line by line to demonstrate their procedures. 

 Next, students played with a static worked-example program on the iPad (see Figure 4 for 

example). This static program presented students with expressions and asked them to simplify 

the expressions, recording their steps and answers using a Stylus pen (left). Once they entered 

their solution, the program showed the student’s answer next to a correct worked example of the 

problem (right). This feedback allowed students to compare their answer to a correct solution 

and was provided regardless of whether they got the problem correct or incorrect. Once students 

had received the feedback, they moved onto the next problem. The 120 problems in this static 

lesson were identical to the 120 problems in the dynamic lesson. It is important to note that this 
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static lesson was not designed to be an exact match for the dynamic lesson, but rather to be a 

high-quality lesson on its own terms that did not use motion and covered the same content. 

 Measures 

 Simplifying Expressions Assessments. Each child completed an 18-item assessment 

involving expression simplification at four different time points: a pretest before instruction, a 

test after day 1 of instruction, a test after day 2 of instruction, and a retention test 1 month later. 

These tests assessed two major types of expression-related problem-solving skills: procedural 

facility with simplification (16-items), and expression transfer (2 items). The problems on the 

pretest, Day 1 test, Day 2 post-test, and retention tests were identical in form and difficulty but 

varied with regards to the specific numbers and variables used. 

 Assessments were coded for accuracy and error analyses on each item were conducted. 

Each item on the assessment was coded as incorrect, correct, or did not attempt. To determine 

the source of the error, the following error codes were used: 1) no error, 2) structural error; or 3) 

addition or negative error (See Figure 5). Since the PS framework is designed to make structure 

concrete, structural errors are particularly interesting for analysis. Structural errors include 

combining unlike terms, over-combination (simplifying the expression correctly and then 

combining un-like terms), and partial structural errors (moving around like terms but not 

completely simplifying the problem). Addition and negative errors were coded when students 

used correct structure, but made an arithmetic error when combining terms. When a problem was 

left blank, it was coded as “did not attempt”. On average, students did not attempt to solve 28% 

of the pretest problems, 10% of the problems on day 1, 5% of the problems on day 2, and 5% of 
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the problems on the retention test. Further, negative or addition errors were rare, occurring less 

than 5% of the time. 

 Mathematics Self-Efficacy and Anxiety Questionnaire. Students were administered a set 

of 10-items pertaining to their self-efficacy and anxiety in mathematics. To assess students’ math 

self-efficacy beliefs, 5 items were adapted from the Academic Efficacy subscale of the Patterns 

of Adaptive Learning Scales (Midgley et al., 2000) (e.g., “I know I can learn the skills taught in 

math this year”) (α=.82). To measure students’ feelings of math anxiety, 5 items were adapted 

from the Student Beliefs about Mathematics Survey (Kaya, 2008) (e.g., “I feel nervous when I 

do math because I think it’s too hard”) (α=.69). Students were asked to rate how much they 

agreed with each item on a scale from 0-100 (0= never, 100= all of the time). Scores for each 

construct were then averaged to create a mean math self-efficacy and mean mathematics anxiety 

composite (ranging from 0-100). 

 Student Engagement in Mathematics Questionnaire. Student engagement during 

mathematics class was measured using a student reported questionnaire on the iPad at 2 time 

points (day 1 and day 2). 18 items (α=.87) were adapted from the Student Engagement in 

Mathematics Questionnaire (Kong, Wong, & Lam, 2003): (e.g., “Today I only paid attention in 

math when it was interesting.”). All 18 items were on a scale from 0-100 (0= no, not at all true, 

100=yes, very true). Scores from the 18 items were then averaged to create a mean student 

engagement composite ranging from 0-100 (0=not engaged, 100=always engaged). 
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Approach to Analysis 

 First, descriptive statistics and correlations were calculated to determine means and 

variability for each variable and relations between each construct. Next, t-tests were used to 

determine whether there were mean differences in achievement between conditions at baseline. 

Third, we conducted hierarchical regression analyses to examine the relative contribution of 

variables in predicting structural performance at three different time points. Model 1 predicted 

performance after day 1 of instruction, after controlling for gender, math self-efficacy, math 

anxiety, engagement on day 1, and pre-test achievement. Model 2 predicted structural 

performance after day 2 of instruction. We included the following variables in the analysis: 

gender, math self-efficacy, math anxiety, engagement on days 1 and 2, pre-test achievement, and 

achievement after day 1. In the second model, we tested our hypothesis that the concreteness 

fading condition (dynamic first) predicted improved learning over the concreteness introduction 

condition (static first). The third model tested whether these effects were retained one month 

later. 

Results 

 Correlations and descriptive statistics for all variables and outcomes are presented in 

Table 1. Mean performance by assessment and condition are presented in Figure 6. T-tests 

indicate that there were no significant differences between conditions at baseline on any 

predictor variables including gender, math anxiety, math efficacy, or engagement on day 1 and 2 

(all p values>0.10) (Table 2). Further, there were no group differences in performance at pretest, 
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t(95) = -0.78, p=0.44. At pretest, most students had little to no understanding of like terms and 

simplifying expressions (on average, only 14% of problems were structurally solved correctly). 

 Models 1 and 2: Fading vs. Introduction of PS 

The regression results predicting performance after Day 1 (Model 1) and day 2 (Model 2) of the 

intervention, and at retention (Model 5) are presented in Table 3. After the first day of 

instruction, no significant differences in achievement between those who received the dynamic 

lesson first or the static lesson first were found, p=0.61. Students in both groups made significant 

gains in their understanding of simplifying expressions; on average, students in both groups 

correctly simplified 66% of the expressions (Improvement of 52%), suggesting that both lessons 

were of high quality. Student’s prior knowledge significantly contributed to mathematical 

performance after day 1 (p<0.01, r= 0.41). Further, math anxiety negatively contributed to 

student performance after day 1 (p<0.01, r= -0.30). 

 Model 2 predicted performance after 2 days of instruction. This outcome is of particular 

interest because it represents the time point when students had received both the static and the 

motion based lesson and allows us to compare whether a dynamic first or static first ordering is 

more effective. While descriptively, students in both conditions improved their understanding of 

algebraic expressions over the two-day intervention, regression analyses in Model 2 demonstrate 

a significant main effect for group F(8, 75) = 7.35, p < .01, ΔR2 = 0.04, suggesting an order 

benefit of receiving the dynamic first lesson before the static lesson. Students who received the 

dynamic lesson first performed approximately 1/4 of a standard deviation higher than the 

students who received the static lesson first on the Day 2 post-test, after controlling for gender, 
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efficacy, anxiety, pretest scores, engagement, and achievement after Day 1 (effect size=0.22). In 

the concreteness-fading group, 87.3% of problems attempted were solved correctly without 

structural errors (M=15.71, SD= 2.49), while only 74.6% of problems attempted were solved 

without structural errors (M=13.43, SD= 4.24) in the concreteness introduction group. Further, 

performance after day 1 of instruction predicted student performance after day 2; however, 

pretest scores were no longer significant. More specifically, for every 1-point increase in 

performance after day 1, performance on day 2 increased by 0.56 points (approximately 3/5 of a 

standard deviation), after controlling for gender, pretest scores, and engagement on day 1. Math 

self-efficacy and engagement did not significantly predict performance at day 2. 

 Model 3: Does this Order Effect Remain at Retention? 

Retention assessments 1 month later revealed that although students retained a level of mastery 

for simplifying expressions, no group differences were observed at retention (p=0.48). However, 

performance after day 2, as well as math self-efficacy predicted higher retention. A post-hoc 

analysis suggests that the relatively greater decline in the dynamic-first group seemed to result 

from a bimodal pattern in forgetting across students (see Figure 7). As can be seen, most students 

showed a pattern of little to no forgetting across this interval, but three students showed 

dramatically lower scores on the final test compared to the test after day 2: all three were in the 

Dynamic First condition. For example, one student in the dynamic first group who got all 18 

problems correct on day 2 only attempted to complete the first 7 problems on the retention test 

(they left the remaining 11 problems blank). One possibility is that while the learning benefits of 

the dynamic-first order do last over time, the ordering also negatively impacted motivation for 
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later paper-and-pencil post-test in a few students. However, in this study, it is not possible to 

determine whether the lack of difference at retention is due to true forgetting or some other 

mechanism (such as lack of motivation). 

Discussion 

 Mathematical formalisms are a productive source for object-based metaphors. In this 

study, we compared two intervention trajectories within the context of an algebra intervention: 

fading and introducing the concrete reification of the object-based metaphors present in the 

manipulation of simple expressions with linear variables. Both dynamic and static lessons were 

effective in improving student task performance. However, the trajectory that faded dynamic and 

concrete motion cues led to more robust performance after 2 days than either single lesson and 

than the static to dynamic ordering (concreteness introduction). We interpret this experiment as a 

window into studying (and minor support for) our speculation, laid out earlier, that mathematical 

notation succeeds in part by offloading sentential reasoning into perceptual-motor actions taken 

over notation. 

Prior work examining concreteness in symbols has yielded ambiguous results. Studies that create 

concreteness through examples that model mathematical principles (Goldstone & Sakamoto, 

2003; Goldstone & Son, 2005) have often found advantages for early concreteness. However, 

our study did not evoke extra-formal domain content in either condition. Other studies which 

have aimed at rendering concrete intra-formal relations or procedures differentially concrete 

have either found mixed results, or found an advantage for an abstraction-first ordering 
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(Kaminski et al., 2008; Kirshner & Awtry, 2004). One key difference between these approaches 

and ours is that prior experiments have generally involved the introduction of fundamentally new 

notations, often with distinct properties that facilitated specific strategies. 

While prior work has primarily conceptualized concreteness in terms of the utility of bringing in 

concrete, real-world models (Barab et al., 2007; Goldstone & Son, 2005; Nathan, 2012), many 

‘hands on’ technologies are instead about making more concrete the manipulation of symbolic 

elements themselves (Marshall, 2007). As a hypothetical instance, if a concrete notation 

represents fractions with pizza slices such that counting the pizza slices is a viable strategy, and 

students adopt that procedure easily, then they may have trouble transferring to an abstraction 

that lacks countable objects (Kaminski & Sloutsky, 2012), making concreteness fading 

unhelpful. However, in our case the distinct affordances of the concrete system—moving and 

grouping symbols—are the very procedures that are useful in the abstract context. The 

procedures were made more available in the concrete version, but are fundamentally identical in 

both. We suggest that in general, concrete notations are likely helpful when they increase the 

availability of generally useful procedures and understandings that applies across notation 

systems, and interfere when they suggest or afford procedures unavailable in the dominant 

abstract notation. We find that, as with more traditional concreteness approaches, initially hands-

on tools can facilitate the subsequent learning from static versions--more than the static tools 

facilitate hands-on experiences. In this case, one possibility is that the fading condition 

introduced the concepts in a manner that least loaded verbal resources and working memory, and 

therefore left students better able to learn from future instruction. 
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 Another possibility is that the Pushing Symbols motion condition suggested distinct 

strategies. Some students who might have relied on memorizing rules may have instead engaged 

in perceptual-motor visualizations suggested by the notation. Math anxiety has a particular 

impact on high-working memory strategies such as rule memorization (Ramirez, Gunderson, 

Levine, & Beilock, 2013). Thus, it may be that part of the advantage of concreteness fading 

found here results from making available to students on day 1 dynamic (non-working memory 

based) strategies that can then be deployed in the abstract static intervention. 

A critical issue in the design of instructional experiences is that of cognitive load (Sweller, 

1994), the degree to which (or the ways in which) memory, attention, and reasoning systems are 

taxed by particular tasks or learning environments. In general, learning suffers when cognitive 

load experienced during a task surpasses available capacity. The theoretical framework of neural 

reuse has particular implications for notation design in its relationship to cognitive load. Neural 

reuse (as discussed earlier), presumes that advanced reasoning occurs to through the cooption of 

previously domain-specific routines and functions for new purposes. For instance, the system 

initially developed to detect and recognize distinctive edge patterns in visual input may have 

been coopted by the development of high-contrast, edge-like writing systems (Changizi, et al., 

2006; Dehaene et al., 2015). Similarly, visual notations coopt perceptual-motor routines for 

processing motion and grouping in real-world objects (Landy, Allen, & Zednik, 2014). This 

suggests that part of the value of a cleverly constructed notation is that it shifts processing loads 

away from memory, attention, and reasoning into powerful, high-capacity perceptual and 

perceptual-motor systems, lowering overall cognitive load. On this account, a virtue of the 

dynamic lesson is that it provided a context for offloading operations into perceptual-motor 
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instantiations, facilitating additional learning from static notation. On the other hand, the day 1 

instructions in the static lesson did not provide a strong context for offloading, so that learning 

was not as well facilitated on the second day. If this is correct, it suggests that an ideal situation 

is one that combines an abstract experience with a background history that supports perceptual-

motor instantiation of operations—a pattern that has also been used to explain the effectiveness 

of gesture in mathematics learning (Goldin-Meadow et al., 2001). A secondary but important 

value is that they demonstrate correct transformations. A student observing their own 

transformations is likely to see many examples of mistaken rule applications; since the system 

only allows for correct actions, using the PS system affords the opportunity for passive 

observation of correct transformations. 

 This same speculative interpretation has a natural articulation in terms of preparation for 

future learning (Bransford & Schwartz, 1999). Dynamic symbols, to the degree that they serve as 

external artifacts that can be internalized as perceptual-motor routines, may provide contexts that 

facilitate reflection and discovery, both by reducing cognitive load and by providing compelling 

initial experiences of structure. That is, beyond reducing cognitive load, a perceptual-routine 

may serve, itself, as the target of reasoning (that is, one can wonder why this routine, rather than 

another, is appropriate). It may be that the strength of the fading condition in part results from 

the differential value of the dynamic and static conditions for facilitating novel experiences of 

structure, and reflections on that structure. Relatedly, one possible benefit of drill-and-kill 

practice is to provide a compelling, fluent, experience of structure that can serve as the 

foundation for later discovery-based learning (Brunstein, Betts, and Anderson, 2009). 
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 Educational Implications 

 These results have implications for mathematics teachers and educators and researchers 

studying mathematical cognition. Most obviously, these results suggest that the dynamic 

interpretation of algebra can helpfully be presented to students. Both groups benefited from the 

presentation of dynamical symbols, including the static-first condition that had already received 

regular symbolic instruction. Simply broadening the number of ways that students are taught to 

interact with symbols may benefit learning. On the other hand, these results also suggest caution; 

it seems to matter for learning how and when symbols are treated as static sentences that express 

meanings, and when and how they are treated as dynamic objects that afford transformation. 

Surely the full picture of how these approaches trade off with each other remains to be seen, but 

we can form some tentative hypotheses. First, it seems that many students learned well from 

each approach: performance after day 1 was already fairly high; but a few students in each group 

barely improved at all. Second, static approaches to symbols emphasize memorizable rules and 

can be justified by reasoning about situations; dynamic approaches emphasize learned perceptual 

patterns, which may be more difficult to explicitly treat as meaningful, or to logically justify by 

reasoning about situations and models. We speculate that static approaches better situate 

transformations in meaningful contexts, while dynamic approaches facilitate calculation. Part of 

the reason may be that treating symbols as objects makes it more difficult to treat them 

referentially (Kaminski et al, 2006; Uttal, Scudder, & DeLoache, 1997). 

Although the actual tradeoffs are likely to be complex, it seems that a good outcome in this case 

was achieved when dynamical symbols were introduced before meaningful discussions of rules 
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over static symbols. On the surface, this seems to conflict with the speculation above, that static 

symbols afford justification while dynamic approaches afford rapid computation. It also contrasts 

with recent findings that Dutch elementary-school students initially construct (presumably rule-

based) ways of calculating order of precedence rules that are not sensitive to spatial structure. 

Sensitivity to spatial properties of symbols (Landy & Goldstone, 2007; 2010) develops over time 

and expertise (Braithwaite, Goldstone, van der Maas, & Landy, 2016). 

This work also adds to a burgeoning literature on the role of technology in the classroom, and 

more broadly the educational experience of algebra learners. While many mathematics tools 

emphasize the role of technology in driving motivation and interest (e.g., Math Blaster), our 

work emphasizes a different role for technology: expanding the scope of what can be 

experienced. Computer technology has played a tremendous role in helping us visualize existing 

at hard-to-experience scales such as that of an atom or even a cell, or being in impossible places 

such as circling a black hole; in this case, we are making directly accessible to experience mental 

operations and actions that had previously to be imagined. Although our language surrounding 

‘manipulating’ equations has involved manual and dynamic spatial elements for centuries, until 

recently it was difficult or impossible to interact with mathematical formalisms that through their 

dynamics enforced mathematical laws. Although these ‘spaces’ are mental, not physical, we find 

the result to be most comparable to learning tools that simulate these obscure or impossible 

experiences. Tools that have as a primary goal the facilitation of intra-notational operations are 

flourishing (popular examples at the moment include Geometer’s Sketchpad, Geogebra, and 

Desmos). These often work by making formal operations physical—but our theoretical 

understanding of how tools like these might function to transform learning lags somewhat 
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behind. Here, we invoked concepts from distributed and embodied cognition, and neural reuse 

(Anderson, 2013; 2014) to provide a theoretical account for the value of physicalizing formal 

operations in dynamic, object-centered interactions. 

Consistent with a preparation for future learning perspective (Bransford & Schwartz, 1999), 

although both groups learned comparably after a single day of instruction—that is, after either 

type of instruction alone—introducing dynamic symbols prior to static symbols helped students 

make sense of the static rules in terms of symbolic experiences—literally picking up and moving 

symbols. This process may have helped them become familiar with the symbolic manipulations, 

and provided mysteries—experiences that could be made sensible in light of the symbolic rules. 

We see this kind of sense making as complementary to grounding symbols in related physical 

experiences (Goldstone, Landy, & Son, 2008). On this perspective, students on their own learn 

rules first because those are taught first; however in many cases being confronted with symbolic 

behaviors might help make the rule-construction process more meaningful and better grounded. 

This perspective is also quite consonant with the idea that procedural, symbolically driven 

reasoning can be powerful and generative, and is best taught interleaved with more ‘conceptual’ 

reasoning processes (Rittle-Johnson, Siegler, & Alibali, 2001). 

 Limitations and Future Directions 

We believe that the primary advantage of perceptual-motor routines comes when they are 

aligned with transformations. However, we acknowledge that the interface design and gestures 

used in this study (distribution, for example) may not align perfectly with the intended 

mathematical transformation. Any interface undergoes iterative development, and is subject to 
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multiple constraints. The version of the technology used in the study reflects a moment in time in 

the evolution of our gesture-based technology interface, not a firm commitment to a particular 

mode of interaction. 

Although our effects are modest and fade by retention one month later, we believe that these 

findings are meaningful, especially given that most results showing benefits of concreteness 

fading have occurred over shorter presentation times and in lab settings. The fact that the effects 

faded by the retention interval may indicate that the ameliorating effects of object-centered 

approaches are short-lived, or may be a result of motivation or the mixing between groups over 

the intervening month. While the retention test provides some indication of overall retention, it 

may not be a pure measure of group differences. Over the month between the lesson and the 

retention test, the teacher could have used the instructional strategies from both lessons routinely. 

Since the students and groups were assigned randomly within-classroom and the teacher was 

present during the intervention, people with both orderings communicated freely with each other, 

students received a mixture of different instructional techniques, and there were ample 

opportunities for teachers to differentially help students who struggled on mathematical concepts 

related to our lesson, it would be somewhat surprising if the effects did not diminish in strength. 

However, as such, the findings reported in this study provide only suggestive evidence of 

concreteness fading, and must be interpreted cautiously rather than conclusively. 

 We expected the concrete lesson to better engage core cognitive processes. In line with 

this prediction, students overwhelmingly reported that they enjoyed solving problems and felt 

like they learned more using PS compared to static and traditional instruction. However, in this 
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study it cannot be definitively suggested that invoking explicit motion increased student 

engagement. Although student reported engagement was slightly higher in the Pushing Symbols 

intervention, both on the first day and the second day, these differences were not statistically 

significant. One potential explanation for this is that both lessons involved solving problems on 

the iPad, which compared to traditional worksheets is novel and more engaging. Also, the static 

lesson used iPad pens to record their answers, which were particularly exciting and new for 

many students. There were also differences between conditions that could have contributed to 

student engagement. While the PS lesson had somewhat more color, uniquely gave a marker 

(“coins”) of success, and had explicit moment-by-moment feedback, the static lesson gave 

clearer feedback about procedures through worked examples. It is plausible that enforcing 

students’ use of feedback and error correctly may be more helpful in the beginning of instruction 

and can be faded out later, but a reverse order may not be as effective. However, while it is 

conceivable that these differences in feedback could lead to differences in outcomes, it is 

important to note that the effect of direct feedback was likely low, since both groups learned the 

same amount from day 1 of instruction. In future studies, there is a need to disentangle the 

various differences between the conditions. For example, testing static only and concrete only 

conditions could provide a comparison that could help better understand the benefits or 

disadvantages to more concrete verses abstract instruction. 

 Conclusion 

 Examinations of algebra learning have largely been rooted, necessarily, in 

counterintuitive notation systems whose mastery involves explicit memorization of rules with 
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minimal perceptual support. These results provide a preliminary demonstration of the possibility 

of basic algebra lessons that align axiomatic algebraic content, explicit goals, and perceptual and 

motor activity to yield substantial learning. It calls for careful investigation of possible strategies 

for learning formal algebras that are intrinsically physical. 

 More broadly, this research fits into a large collection of recent research emphasizing the 

importance of the specific use of spatial and perceptual factors in helping children learn reading 

(Correll et al., 2012; Glenberg, 2011; Kaminski & Sloutsky, 2013). Learners must work with the 

representations they are shown and create. It is thus intuitive that presentation elements that seem 

minor to an expert are critical for effective learning, and indeed increasing evidence indicates 

that very small differences in surface form can have substantive effects on learning outcomes; 

because these differences can have cascading effects, such formatting issues may have 

meaningful effects on overall mathematics learning. Symbolic systems are not just tools for 

expressing meaning—the symbols we use extend the thoughts we can think (Clark, 1998; 

Iverson, 2007). They do so best when they mesh with pre-existing cognitive and perceptual 

systems. 
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Table 1. Descriptive Statistics and Correlations for All Variables 

 1 2 3 4 5 6 7 8 9 10 

1. Group 

(1=Concreteness Fading) -          

2. Gender (1=male) 0.14 -         

3. Math Anxiety 0.03 

-

0.1

1 -        

4. Efficacy 

-

0.17 

-

0.0

3 

-

0.46

** -       

5. Pretest Achievement 0.08 

0.1

1 0.07 

-

0.09 -      

6. Day 1 Engagement 0.08 
-

0.1

-

0.39

0.45

** 0.12 -     
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4 ** 

7. Day 1 Achievement 

-

0.02 

-

0.1

0 

-

0.20

** 0.04 

0.40

** 

0.22

** -    

8. Day 2 Engagement 

-

0.06 

-

0.2

4* 

-

0.23

* 

0.24

* 0.05 

0.62

** 0.17 -   

9. Post-test after Day 2 

0.29

** 

0.0

4 

-

0.14 

-

0.04 0.19 0.12 

0.54

** 

-

0.0

2 -  

10. Retention 

Achievement 0.14 

0.0

1 

-

0.20

* 

0.22

* 0.19 

0.29

** 

0.50

** 

0.1

3 

0.77

** - 

Mean 0.37 

0.4

4 

40.3

0 

75.6

0 2.27 

71.4

9 

11.9

6 

71.

90 

14.2

6 

14.

47 

Standard Deviation 0.48 
0.5 19.8 17.6

2.50 
15.3

4.36 
17.

3.85 
4.4



Acc
ep

ted
 M

an
us

cri
pt

 

 
42 

42

0 0 9 5 00 7 

N 98 98 92 92 97 87 93 93 94 94 

Note. **p < 0.01, *p < 

0.05           
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Table 2 Descriptives and t-test results by Condition 

 

Concreteness-

Fading 

Concreteness 

Introduction     

Measure M SD M SD df t p 

Cohen'

s d 

Math Anxiety 40.95 19.63 39.92 20.06 
9

0 

-

0.2

4 

0.8

1 
0.05 

Efficacy 71.76 19.36 77.85 16.39 
9

0 

1.6

1 

0.1

1 
-0.34 

 Pretest Performance 2.53 3.16 2.11 2.03 
9

5 

-

0.7

8 

0.4

4 
0.16 

Day 1 Engagement 73.14 11.62 70.57 17.10 
8

5 

-

0.7

5 

0.4

6 
0.18 
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Day 1 Performance 11.85 4.85 12.02 4.10 
9

1 

0.1

7 

0.8

6 
-0.04 

Day 2 Engagement 70.59 16.79 72.66 17.23 
9

1 

0.5

7 

0.5

7 
-0.12 

Post-test Performance after 

Day 2 
15.71 2.49 13.43 4.25 

9

2 

-

2.8

5 

0.0

1 
0.65 

Retention Performance 15.26 4.12 14.02 4.62 
9

2 

-

1.3

1 

0.2

0 
0.28 
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Table 3 Summary of Hierarchical Regression for Variables Predicting Algebraic Expression 
Performance (N=98). 

  
Model 1- Day 

1 Performance 

Model 2- Day 

2 Performance 

Model 3- 

Retention 

Performance 

  B 
S

E 
β B 

S

E 
β B SE β 

Intercept 
15.

32 

3.

30
 

11.

22 

3.

07
 

-

2.4

5 

2.

93 
 

Gender 

(1=male) 

-

1.7

5 

0.

87

-

0.21 

0.0

2 

0.

71

0.0

0 

-

0.1

7 

0.

62 

-

0.0

2 

Math 

Efficacy 

-

0.0

3 

0.

03

-

0.10 

-

0.0

2 

0.

02

-

0.1

1 

0.0

4* 

0.

02 

0.2

0* 

Math - 0. - - 0. - 0.0 0. 0.0
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Anxiety 0.0

7** 

03 0.30

** 

0.0

2 

02 0.1

2 

1 02 3 

Pretest 

Performanc

e 

0.7

0** 

0.

17

0.41

** 

-

0.0

3 

0.

15

0.0

4 

0.0

5 

0.

13 

0.0

3 

Day 1 

Engagemen

t 

0.0

1 

0.

03
0.02 

-

0.0

2 

0.

03

-

0.0

7 

0.0

1 

0.

03 

0.0

5 

Day 1 

Performanc

e 

   
0.5

6** 

0.

09

0.6

3** 

0.1

6 

0.

10 

0.1

7 

Day 2 

Engagemen

t 

   
0.0

0 

0.

03

-

0.0

1 

0.0

1 

0.

02 

0.0

5 

Day 2 

Performanc

e 

      

0.6

9*

* 

0.

11 

0.6

6*

* 
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Group 

(1=Concret

eness 

Fading) 

-

0.4

6 

0.

90

-

0.53 

1.6

9** 

0.

73

0.2

2** 

-

0.4

7 

0.

66 

-

0.0

6 

R2 0.51 0.47 0.65 

F for 

change in 

R2 

   

Note. **p<0.01, *p<0.05. Model 1 predicts performance receiving one day of instruction. Model 

2 predicts performance after receiving both the static and dynamic lessons. Model 3 predicts 

retention one month later. 
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Figure 1: An example mathematical derivation. The panel on the left shows the basic 
transformations as typically represented; that on the right illustrates the dynamic processes 
involved. Distribution as a perceptual-motor routine involves a ‘splitting’ followed by a 
‘translation routine, for example. Red arrows represent the action or movement and purple 
arrows represent the mathematical transformation. 

 



Acc
ep

ted
 M

an
us

cri
pt

 

 
49 

49

Figure 2: Annotated rendering of the dynamic motion in the technology instantiation of Pushing 
Symbols. The purple dashed curves indicate user actions; the blue lines indicate responses of the 
system to the user action. The top row illustrates commutativity; the bottom row indicates 
factoring. A video of the interaction can be seen at 
https://www.youtube.com/watch?v=MMVUDTwZmc4. 
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Figure 3. Example of the Pushing Symbols dynamic tile activity. 
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Figure 4. Screenshots of the static iPad worked example program components. Students were 
initially presented with an expression and asked to simplify. A stylus pen was used to record 
their work. They entered their final answer on the bottom of the screen. (left) A new screen 
appeared (right) that compared their answer to a worked example of the problem. 
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Figure 5. Error types and examples 
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Figure 6. Mathematics performance on algebraic expressions by condition and time 
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Figure 7. Examination of Achievement After Day 2 and Retention by condition 

 

 


