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Abstract 

Spatial memory research has attributed systematic bias in location estimates to a 

combination of a noisy memory trace with a prior structure that people impose on the 

space.  Little is known about intra-individual stability and inter-individual variation in 

these patterns of bias.  In the current work we align recent empirical and theoretical work 

on working memory capacity limits and spatial memory bias to generate the prediction 

that those with lower working memory capacity will show greater bias in memory of the 

location of a single item.  Reanalyzing data from a large study of cognitive aging, we find 

support for this prediction.  Fitting separate models to individuals’ data revealed a 

surprising variety of strategies.  Some were consistent with Bayesian models of spatial 

category use, however roughly half of participants biased estimates outward in a way not 

predicted by current models and others seemed to combine these strategies.  These 

analyses highlight the importance of studying individuals when developing general 

models of cognition.    

 

 Keywords: memory, spatial, bias, working memory, individual differences  
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Spatial Working Memory Predicts Spatial Memory Bias in Adults 

Memory of an object’s location in space is known to be subject to systematic distortions.  

There are many potential sources of bias in location memory, such as attentional asymmetries 

(Schurgin & Flombaum, 2014) and perceptual momentum (Freyd & Johnson, 1987), but the 

most studied is the perceptual organization that people impose on space.  The common finding is 

that when participants are shown an object and then immediately asked to reproduce its location 

from memory, estimates are shifted away from the outer edges of a defined space and also away 

from internal axes of symmetry.  According to prominent models such as the Category 

Adjustment Model (Huttenlocher, Hedges & Duncan, 1991; Huttenlocher, Hedges, Corrigan & 

Crawford, 2004) and Dynamic Field Theory (Simmering, Spencer & Schöner, 2006; Spencer & 

Hund, 2002), this bias results from a process that combines information about the stimulus 

location with information about the dominant reference frame that people apply to the space.  

These and other studies of object-location memory typically use an analytic approach that 

combines results from participants and fits their collective data. Because this approach presumes 

that the collective provides a good representation of individuals, it can potentially lead to 

conclusions about cognition that do not apply to individual minds.  In fact, little is known about 

how adults differ in these patterns of memory bias (but see Holden, Duff-Canning, & Hampson, 

2014 for work on gender differences).  Here we examine spatial memory biases by modeling 

participants individually, allowing us to examine the variability in how people structure a given 

space and in how they use that structure in memory.  We then examine whether individual 

tendencies are consistent across horizontal and vertical dimensions of space and across two 

different spatial memory tasks.  Finally, we investigate whether variability in spatial memory 

biases can be accounted for by differences in working memory capacity and adult age.     
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 A common paradigm in spatial memory experiments involves showing participants a 

single object within a bounded spatial frame and then, after a short delay, asking them to recall 

its location.  Studies have used a variety of objects and frames, such as a dot shown within a 

circle, rectangle, or other shape, an angled line within a 90-degree frame, a small toy buried 

somewhere in a rectangular sandbox, or a spaceship projected onto a tabletop.  In addition, 

studies vary in the response procedure used: participants respond by marking the location on a 

piece of paper, by clicking with a mouse on a computer screen, by pointing to the location in 

physical space, or by discriminating whether a new location is the same or different from the one 

just studied.  Despite the variety of approaches used, a common pattern of spatial memory bias 

has emerged in which estimates are shifted away from the outer edges of the spatial frame and 

away from internal axis of symmetry, as shown in Figure 1. 

The two prominent explanations of this bias are the Category Adjustment (CA) Model 

and Dynamic Field Theory (DFT).  Rather than differentiating them, here we focus on their 

commonalities:  both attribute these spatial biases to a combination of memory for the individual 

object location and a prior structure that people impose on the space.  In the CA model, the 

structure is in the form of spatial categories (i.e., regions) that are bounded by the frame’s edges 

and internal axes of symmetry.  The model proposes that location is encoded hierarchically, at 

both the particular and categorical level, and that these two levels are combined in a Bayesian 

fashion with the category acting as a prior distribution used to inform the uncertain memory of 

the particular location.   Although this combination causes estimates to be biased toward 

category centers, it also makes them less variable than they would have been without the 

categories, and the net effect is to improve accuracy of reports.  In Dynamic Field Theory, the 

structure is provided by the central midline of the space (or other perceptible features), which has 
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inhibitory effects on the peak of activation produced by the target stimulus.  This inhibition 

causes the peak of activation that was triggered by the stimulus in the excitatory working 

memory field to drift away from the midline, biasing estimates away from it.   

An important finding in this literature is that such biases are more pronounced the longer 

a stimulus is held in memory, which indicates that the bias in responses results from post-

encoding processes rather than from a bias in perception.  Both models described above account 

for this finding.  In the category adjustment model, longer delays lead to greater particular-level 

uncertainty, and thus greater weight is given to category information; in the DFT, the interactions 

between inhibitory layers and excitatory layers unfold over time, leading to greater cumulative 

impacts of reference-axis driven inhibition when delays are longer.   Thus, increasing the delay 

selectively changes the representation of the stimulus, but not the structuring of the space.1 

Drawing on these accounts, we conceptualize location estimates as the product of an assembly of 

information sources, including a noisy memory trace and a spatial organization.  We model these 

sources respectively as a Gaussaian distribution centered on the true stimulus location and as 

normally distributed categories centered on the midpoint of each screen half, and we adopt the 

Bayesian mandate that more weight is given to the categories when the memory trace is less 

precise, thus producing more bias.  

CAM and DFT have mostly been applied to data aggregated across individuals and not 

used to investigate individual differences.  However, both models are properly models of intra-

individual processes such as memory encoding, decay, and retrieval of spatial location. If 

individuals differ with respect to these processes, they will have different outcomes, and 

aggregating across individuals may lead to misleading conclusions (cf., Baloff & Becker, 1967). 	
  

In fact, these models can be used to generate predictions about individual differences that have 
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not been tested.  Specifically, if bias results from the combination of prior structure with 

imprecise memory, then bias in spatial memory should be predicted by individual-difference 

variables that are theoretically related to memory precision.  Here we examine two such 

variables, age and working memory capacity, by reanalyzing a data set that Siedlecki & 

Salthouse (2014) previously reported.  Noting that measures of verbal memory are commonly 

included in cognitive batteries, but measures of spatial memory are not, Siedlecki & Salthouse 

introduced a location memory task as part of a large scale study of cognitive aging. Whereas 

their focus was on spatial memory accuracy, here we separate out two components of responses, 

precision and bias, in order to examine their connection to working memory and age. 

In addition to testing whether working memory and age predict precision and bias, a 

second goal of this work is to characterize individual variation in spatial memory bias.  The 

implicit assumption in prior work has been that the group mean well represents the behavior of 

individuals.  Such an approach ignores the potential for diversity in the cognitive strategies 

individuals may adopt.  Here we model participants individually and find that a substantial 

proportion of them show a systematic bias that is not well characterized by either DFT or CAM.   

 

Working Memory Capacity Limits 

As noted above, one way to examine the relation between precision and bias in spatial 

memory is to manipulate precision by varying the duration for which a location must be held in 

memory (e.g., Hund & Spencer, 2003; Huttenlocher et al., 1991).  That approach treats variation 

between individuals as noise. The present study takes an alternative, complementary approach by 

examining whether precision and bias are accounted for by natural variation in the availability of 

cognitive resources.   Specifically, we predict that those who perform worse on measures of 
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spatial working memory capacity (SWMC) will tend to have less precision in memory and thus 

greater bias in responses when estimating a single location.   

Working memory capacity is the ability to maintain information about the locations of 

objects that are no longer present, and it is usually assessed with tasks that require participants to 

retain information about multiple objects simultaneously.  There is ample evidence that most 

people struggle when the number of items exceeds four (e.g., Luck & Vogel, 1997), and some 

have characterized this limitation as reflecting a fixed number of “slots” in visual working 

memory (Cowan, 2001; Luck & Vogel, 1997; Pashler, 1988).   According to classic slot models, 

each slot has a fixed resolution and holds a discrete, all-or-none representation, and capacity 

limits become apparent when the number of items to be remembered exceeds the number of 

available slots.  By such accounts, remembering a single location is well within normal capacity 

limitations, and so there is no reason to predict that precision on this task would be related to 

measures of working memory capacity.   However, more recent accounts do predict this 

relationship.  For example, updated slot models such as Zhang & Luck’s (2008) “slot + average” 

model allow that when remembering very few items, greater precision can be achieved by 

allocating multiple slots to code an individual item.  Resource models (Bays & Hussain, 2008; 

Bays, Wu, & Hussain, 2011; Fougnie, Asplund, & Marois, 2010) and Dynamic Field Theory 

(Johnson, Simmering, & Buss, 2014; Simmering & Perone, 2013; Spencer, Perone & Johnson, 

2009), hold that the resource of working memory can be flexibly allocated to remember fewer 

objects with greater precision or more objects with less precision: individuals who have more of 

this resource will perform better on measures of capacity and on measures of precision.  The 

map-architecture account of spatial working memory capacity from Franconeri and colleagues 

(e.g., Franconeri, Alvarez & Cavanagh, 2013), suggests that being able to maintain more precise 
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location information in memory produces the ability to store more simultaneous object locations 

in memory, i.e., that precision gives rise to greater capacity, specifically in the spatial domain 

(see also Lavenex, Boujon, Ndarugendamwo, & Lavenex, 2015).  Thus, with the exception of the 

classic slot models, several models of visual working memory capacity predict that people who 

are able to hold more items in memory simultaneously will also be able to remember a single 

location more precisely. 

 

Combining Capacity Limits with Memory Bias 

Recent models of working memory capacity share the prediction that the number of 

locations that can be simultaneously maintained in working memory is related to how precisely 

an individual location can be maintained (Figure 2).  In turn, the Category Adjustment Model 

predicts a relationship between the precision of an individual’s memory for an item and the bias 

in their location memory, since CAM treats bias as the result of a rationally weighted 

combination of inexact memory and category information in which categories compensate for 

the noise in memory.  If these two relationships hold, we can generate a new, previously untested 

prediction that those with lesser working memory capacity will also tend to show greater bias in 

memories of location (Figure 2, double arrow).  

Although this prediction is directly motivated by the CAM, DFT could also be 

implemented in a way that would account for this result.  According to DFT’s spatial precision 

hypothesis, low working memory is associated with more diffuse regions of activation around 

the target location in the field that represents spatial working memory.  All else being equal, this 

greater diffusion would produce more bias in estimates because a larger proportion of the 

activation region would be near to the reference frame and thus subject to its inhibiting effects.  



Running	
  head:	
  SPATIAL	
  WORKING	
  MEMORY	
  PREDICTS	
  BIAS	
   	
  	
  9	
  
	
  

	
   	
  

However, the spatial precision hypothesis also suggests that with lesser spatial working memory 

capacity, the reference axis itself would produce more diffuse activation in working memory, 

and thus it would have weaker inhibitory effects.  Thus it is not obvious that DFT would generate 

the same prediction as CAM about the relationship between bias in location memory and 

measures of spatial working memory capacity, but it could account for such a relationship by 

allowing the reference axes to be less susceptible than the target peak to the increases in 

diffusion that would stem from lower working memory capacity.  

Another reason to predict a link between working memory capacity and spatial memory 

bias is that those with greater WMC are better able to control attentional focus (cf., Kane, Poole, 

Tuholski, & Engle, 2006; Bleckley, Durso, Crutchfield, Engle, & Khanna, 2003) and better able 

to maintain information in an active state across a delay and despite distractors (Unsworth & 

Engle, 2007).   These conclusions are drawn from studies that use non-spatial measures of WMC 

such as operation span tasks, and they point to a general cognitive tendency rather than one that 

is specifically spatial.  Assuming that a general difficulty maintaining information also applies to 

the maintenance of location, this would suggest that those performing worse on both spatial and 

verbal working memory tasks would have less precision and more bias in memory for location.  

To our knowledge, this has not been studied, but Siedlecki & Salthouse (2014) showed that 

accuracy on a simple location memory test is predicted by fluid ability (Gf), which is highly 

related to WMC (see Salthouse, Pink & Tucker-Drob, 2008), and suggested that this may be 

because Gf is related to general aspects of attention allocation.  The present work builds on this 

finding by modeling precision and category use as components that contribute to accuracy and 

by examining the relation between these components and measures of working memory capacity. 
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Regardless of whether greater spatial precision leads to greater spatial working memory 

capacity or vice versa, there is reason to expect that those with lower SWMC will store 

individual object locations less precisely.  To the extent that people use spatial structure to adjust 

for inexact memory, they would also be expected to show more pronounced biases.   

 

The current study 

The work presented here is a new analysis of data that was collected previously as part of 

a large study (n = 778) of cognitive aging (see Siedlecki & Salthouse, 2014).  In addition to 

assessing adults on a variety of cognitive and emotional factors, the study included two spatial 

memory tasks.  One had participants remember the location of a single dot at a time, and so was 

much like the tasks used in previous research to examine spatial memory biases, and the other 

involved a more challenging version in which participants were asked to retain three successive 

locations in memory.   Although these tasks were designed originally to examine relations 

between cognitive functioning and spatial memory accuracy (see Siedlecki & Salthouse, 2014), 

the dataset also provides a unique opportunity to explore individual differences in spatial 

memory bias and precision.  

There was a wide range of age in our sample, allowing us to examine whether advancing 

age may also lead to increased reliance on category structure. Prior studies present mixed 

evidence for this prediction.  Some studies have shown that although keeping track of multiple 

objects becomes more challenging as people age, memory for an individual location or small 

number of locations is relatively preserved (e.g., Olson, et al., 2004; Noack, Lövden, & 

Lindenberger, 2012).  In their analysis, Siedlecki and Salthouse (2014) found no effect of age on 

spatial memory accuracy once other cognitive factors have been taken into account.  However, 
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according to the “neural noise hypothesis” (Welford, 1984), aging is associated with increased 

noise in neural signaling, leading to less precise perceptual and memory representations. 

Consistent with this claim, Peich, Husain, and Bays (2013) examined precision of recall for 

single features (color or orientation) of an individual object and found that even when 

remembering only one object, estimates were less precise among older adults than younger ones.  

If memory for an individual object’s location is also less precise in older adults, they may also be 

expected to give more weight to category biases, and thus show increased bias in spatial memory. 

 

Method 

Participants 

Participants consisted of 778 adults between the ages of 18 and 92 years (M = 54.7, SD = 

14.5), recruited through flyers, newspaper ads and participant referrals.   

Procedure  

Participants completed two location memory tasks on computer screen with resolution 

640 X 800 pixels per inch.  In the single dot task, each trial began with a crosshair appearing in 

the center of a white screen for 500 ms followed by a dot (14-pixel diameter), which appeared 

for 1000 ms at a randomly selected location on the screen. The screen color in the background of 

the dot varied randomly between green, yellow and cyan, and participants were told to ignore the 

color for this task.  The dot was followed by a 400-ms mask of moving dots on a white 

background, after which the screen returned to the color it had been during dot presentation and 

participants used the cursor to reproduce the dot’s location.   In the multiple dots version of the 

task, three successive dots were shown, each with a different colored background and each 

followed by the 400-ms mask.  Participants were then given a blank screen in one of the three 
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colors, randomly chosen, and told to click on the location where the dot had appeared on the 

screen of that color.  Thus the multiple dot task differs from the single dot task not only the 

number of items to be recalled, but also in that it requires binding of location to screen color. 

Participants completed many other tasks as part of the original study, but here we restrict 

our focus to two measures of working memory capacity, one spatial and one verbal, described in 

Salthouse et al. (2008) and Salthouse (2011).  Spatial working memory capacity was assessed 

with a running span task in which participants viewed a series of marked locations in a 12-square 

grid, as shown in Figure 3.  The locations to be remembered were indicated by a large red dot 

that appeared within one square at a time for one second followed by a 250 ms interstimulus 

interval.  The sequence of locations varied unpredictably in length from four to 12 items and 

once it ended, participants used the mouse to click on the locations of the last four items seen, in 

their correct order.  Verbal working memory capacity was assessed with a similar running span 

task, except that rather than seeing a sequence of locations, participants viewed sequences of 

letters. Performance in both tasks was assessed as the proportion of items recalled in the correct 

order from the last four items in the lists.    

Analyses and Results 

Analytical Approach and Model Checks 

We employed continuous model expansion as an analytic technique in developing our 

final data model (Gelman, Carlin, Stern, & Rubin, 2014).  In this process, one begins with a 

simple model of the data, and develops more general models that contain the simple model as a 

special case, iterating this process until the data is adequately captured for the present concerns 

of the modeling activity (see appendix for more details). Bias data from both the single-dot and 

multi-dot tasks is shown in figure 4.  Bias is the signed difference between the location of the 
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stimulus position and the location of the response position, in pixels.  In the horizontal dimension, 

positive bias indicates a rightward shift and negative bias a leftward shift; in the vertical 

dimension, positive bias indicates an upward shift and negative bias a downward shift.  The 

results in figure 4 are consistent with previously published findings: estimates are biased away 

from the outer edges of the screen and away from the horizontal and vertical axes of symmetry.  

Because the overall pattern fits reasonably well the predictions of the category adjustment 

approach we began analyzing our data with a straightforward category adjustment model, 

predicting normally distributed memory traces, and normally distributed categories at the 

midpoint of each screen side. An important parameter in this model is the category weight: 

responses are a weighted average of the stimulus memory trace and the nearest category. The 

category weight is the proportion of the response contributed by the category: a value of 1 

reflects moving each dot fully to the center of the category (e.g., the midpoint of the left and 

right screen halves), 0 indicates no use of the category at all, and 0.5 reflects responses that on 

the whole average the position of the central category and the actual dot location. Full details of 

this approach are provided in the appendix. 

However, this approach did not provide an adequate fit to the data; in the category 

adjustment approach, the midpoints of the left and right sides of the screen are presumed to be 

the central members of the category, and so should show no bias.  As can be seen in Figure 4, in 

this experiment the actual unbiased points (i.e., the locations toward which estimates are biased) 

are not at the screen-half centers (values -25 and 25 on the x axis), but are shifted outward 

toward the screen edges in at least three of the four cases.  Furthermore, examination of data 

from individual participants indicated that while some participants matched closely the 
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predictions of the category adjustment account, many did not.  Indeed, some participants 

appeared to systematically shift all responses toward the screen’s outer edges.   

In the DFT model of spatial memory, bias has been characterized as repulsion from the 

midline reference axes rather than toward category prototypes, and so at first glance it might 

seem that DFT would offer a better account than CAM for the systematic outward bias we 

observed here.  However, there are two reasons why DFT also does not easily account for this 

bias.  First, the DFT predicts that the repulsion away from the midline will be greatest for 

locations near the midline and will fall off as distance from the midline increases, but the 

outward bias we observe does not have this characteristic.  In fact, it appears that outward bias is 

constant or increasing with distance from the center, and this pattern is inexplicable under both 

CAM and DFT.  In addition, we note that under DFT, the outer edges of the screen would also be 

expected to have repulsive effects.  In fact, because they are visibly present features, they might 

be expected to have even stronger repulsive effects than the midline structure, which is not 

visibly marked (Simmering & Spencer, 2007), and that should produce a countervailing inward 

bias, especially for stimuli in the outer region of the space.   

To capture this systematic outward bias in the model, we added an additional feature, 

which we term a fixed outward bias.  Each response combines, in some fitted proportion, a 

memory trace that is systematically shifted from its true location by the fixed outward bias factor 

and which has some degree of precision (i.e., lack of variability), along with a corrective bias 

derived from category adjustment.  In addition, we employed weighted categorization near the 

screen center, to account for the roughly 20% of the screen in which bias is weaker than the 

simplest CA model would predict. This weighting comes from the relative probability of each of 
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the categories based on their variance (See appendix for details), and did not involve any 

additional parameters. 

This combined model was evaluated by nested model comparison. Specifically, we 

conducted two chi-squared model comparisons using the fit of each model to each individual as a 

single data point, comparing the combined model to two simpler nested models: one that 

included only the fixed outward bias, and one that included only the category weight. Across 

participants, the mixture model significantly improved fit over both simpler models (vs. CAM: χ2 

(757) =2337,  p < 0.00001; vs. fixed outward bias: χ2 (757) =3257,  p < 0.00001).  Of course, 

because the mixture model contains the other models as special cases, the mixture model fit best 

for each subject. To account for this, we chose the best model for each individual based on BIC 

values. The model with the lowest BIC value was CAM for 40 % of subjects, the pure outward 

model for 39%, and the mixture model for the remaining 20% of participants. Although this 

provides a concise way report the variety of strategies participants use, in our analyses we do not 

classify people trichotomously because the actual parameter fits were relatively unimodal (see 

Figure 7).  For analysis, we used model fits from the mixture model for all participants. The final 

model residual was considered acceptable (Figure 5). See the appendix for a detailed 

mathematical description of the resulting model.  

Data from each participant was fitted to this model, separately for the single-dot and 

multi-dot tasks, and also (to provide an estimate of reliability) the horizontal and vertical 

dimensions. For each participant, we examined three of the resulting parameters:  memory 

precision (i.e., the lack of variability in the memory trace), category weight, and fixed outward 

bias.  It should be noted that our measure of memory precision differs from the response 

accuracy measure examined in earlier work (Siedlecki & Salthouse, 2014) in that it is a model-
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derived parameter representing one theoretical determinant of accuracy. That is, we treat 

memory precision, category weight, and the fixed outward bias factor as components that 

combine to produce responses, and thus each can contribute to response accuracy. Throughout 

what follows, we used a Monte Carlo approach to compare tasks and estimate individual 

differences parameters.  For each test (using general linear models or differences in means), we 

created 10,000 random resamplings of the original data, and compared our difference against 

those created by the Monte Carlo simulations to estimate the probability of the obtained results 

under the null hypothesis. 

Before addressing variation between individuals, we first verify that the data aggregated 

across individuals is consistent with findings from prior work.  Specifically, precision should 

decrease and category weight should increase the longer a stimulus is held in memory.  Because 

the multiple-dot task presented three stimuli in succession, the first dot in the series has the 

longest retention interval and the third dot has the shortest, and indeed, Siedlecki & Salthouse 

(2014) reported that overall error was greatest for the first dot and least for the third.  By 

analyzing separate sources of error, we show that this effect is captured by increased category 

weight and decreased precision for locations presented earlier in the sequence (Table 1).   In 

other words, the overall pattern of bias shown in Figure 4 is more pronounced for dots that 

appeared earlier in the sequence, as shown in Figure 6.  We also note that the single-dot task, 

which Siedlecki and Salthouse showed was performed more accurately than the multiple-dot task, 

showed overall greatest precision and least category weight.  Table 1 also shows that the fixed 

outward bias is greater with longer retention intervals.   

Variability across individuals  
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Our first goal was to examine the degree to which individuals differ from each other in 

their spatial memory performance. Although aggregate behavior reflected some mixture of a 

constant bias (typically outward) and category adjustment, individual participants behaved quite 

differently from one another.  To illustrate, we consider horizontal bias in the single-dot task.  

Figure 7 presents estimates for individual participants of category weight and fixed outward bias.  

Recall that for estimated category weight, a value of 1 reflects moving each dot fully to the 

center of the category (e.g., the midpoint of the left and right screen halves), 0 indicates no use of 

the category at all, and 0.5 reflects responses that on the whole average the position of the central 

category and the actual dot location. For the fixed outward bias factor, values greater than 0 

indicate outward bias and values less than 0 indicate inward bias.  As is apparent from Figure 7, 

increased category use weakly negatively correlated with fixed outward bias (r = -0.22, p < 

0.0001). Qualitatively, several different patterns emerged.  A few participants showed a 

systematic inward bias (red circle); more showed a systematic outward bias (purple diamond).  A 

few showed more-or-less typical category adjustment behavior (green square) only.  Other 

participants (blue triangle), in our analysis, seemed to combine these two strategies.  

Participants responding with a generally systematic inward bias have sometimes been 

thought of as adjusting toward a single central category, such as in young children (Huttenlocher 

Newcombe & Sandberg, 1994).  This is a plausible explanatory account of the behavior of 

participants such as the red circle, but is not included in this model directly because it cannot be 

practically distinguished from an inward fixed bias (that is, a fixed bias value less than 0).   

Reliability of the Fitted Parameters  

We next examined the reliability of the parameters of interest within individuals.  

Specifically, we examined whether performance in the horizontal dimension was correlated with 
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performance in the vertical dimension.  Although these responses are in principle independent, 

the underlying cognitive constructs are not. In particular, memory precision would be predicted 

to be consistent across dimensions.  In addition, we assessed intra-individual correlations 

between the single-dot and multi-dot tasks.  This model fits four parameters to each individual’s 

behavior with both the single and the multiple dot tasks, with only 40 unique data points per 

model fit.  Although the model is fairly well-constrained, and only three of those parameters are 

of interest here, we nevertheless considered it important to estimate the reliability of these fits.  

 As Table 2(a) indicates, memory precision is highly consistent across dimensions within 

a given task.  Not surprisingly, individuals who were estimated to have greater memory precision 

in the horizontal dimension were estimated to have greater memory precision in the vertical 

dimension, with correlations around .8 within each version of the task.  There are also 

moderately high (i.e., above .5) correlations between the memory precision parameters estimated 

from the single dot task and those estimated from the multiple dot task, suggesting a common 

feature of memory precision across the two tasks. 

The model integrates the precision of memory and the presumed category structure to 

create an estimated overall level of categorical bias. This bias is a proportion, reflecting the 

proportion of the distance between the stimulus and the category by which the response are 

deformed. A category bias of 1 reflects using just the category when making responses, while a 

category bias of 0.5 reflects averaging the stimulus location and the category. Table 2(b) reports 

the correlations across dimensions and tasks for this parameter.  Although correlations were 

lower than for precision (reflecting, perhaps, variability in category structures), the same patterns 

held as in the other parameters, with cross-task correlations ranging from .23 to .36.  
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Fixed outward bias was also estimated in all four data sets.  Less is known about the 

sources and modulators of this bias, so we did not have strong predictions about how it would 

change across task or direction. As shown in Table 2(c), all four estimates were positively 

correlated, and were statistically significant.  However, the actual correlations were relatively 

low between tasks (ranging from .19 to .31), suggesting that people may have adopted somewhat 

different strategies for the single and multi-dot tasks (cf. Crawford & Jones, 2011).  

 

Individual Differences in Dot Location Bias 

Because of the positive correlations across dimensions, and because we did not have any 

strong predictions about task dimensions, we collapsed the vertical and horizontal direction fit 

parameters for each task into a single average measure for analyses of individual and task 

differences.  

Individual difference patterns were assessed by applying linear models to the results of 

the parameter fits. Since one parameter set was fitted to each individual, parameter fits can be 

used as a measure, in the same way that using the mean of a set of response times can be taken as 

extracting the parameter of a best-fitting normal model. Here we consider how memory precision, 

category weight, and fixed outward bias factor are predicted by several particular individual 

parameters: spatial working memory, verbal working memory, and age.2  For the multiple dot 

task, we also included as a predictor the relevant parameter estimate from each participant’s 

performance in the single dot task in order to determine whether our predictors account for 

variance that is unique to this more complex task.  Because distributions of the parameters 

cannot be regarded as normal, we evaluated statistical significance in these models using a 

bootstrap analysis with 10,000 replications per model. Because we evaluated four potential 
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predictors across three dependent measures for each parameter of independent interest, we used a 

Bonferroni correction for each analysis, so that a test was considered significant at the 0.05 level 

if the probability was less than 0.0042.  These results are presented in Table 3. 

 The results in Table 3 show that memory precision is significantly predicted by scores on 

a spatial working memory task in both the single-dot (.35) and multiple dot (.39) tasks, as shown 

in Figure 8.  The finding is especially interesting in the single dot task because a single location 

is well within the capacity of most people.  With precision on the single dot task accounted for, 

SWM accounts for additional variance in the multiple dot task, which more closely resembles 

tasks used to assess SWM capacity.  In addition, although prior work suggested that age would 

have little relationship to memory precision when only one location was to be remembered, here 

we find a small but significant effect of age for that task (-.12).     

We predicted that those with lesser spatial working memory capacity would show greater 

reliance on spatial categories when estimating locations.  This effect emerges with small but 

significant correlations between spatial working memory capacity and category weight in both 

the single dot (.24) and multiple dot tasks (.32; see Figure 9).  Once spatial working memory is 

taken into account, age and verbal working memory did not significantly predict further variance 

in most cases, suggesting that this finding may be specific to spatial working memory.  However, 

the correlation between spatial and verbal working memory capacity was .53 and both correlated 

with age (-.35 and -.26, respectively), making it difficult to make definitive conclusions about 

specificity of mechanism.  

Results for the fixed outward bias factor were smaller and less consistent.  In the single 

dot task, there was a small but significant effect of age (.11), suggesting that increased age was 

associated with a smaller tendency to shift estimates outward.  In the multiple dot task, those 
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with higher spatial working memory capacity tended to show decreased fixed outward bias (-.31).  

The pattern could suggest that, like category-based adjustment, fixed outward bias is something 

people engage in more when memory capacity is limited, however, the inclusion of a fixed 

outward bias parameter is novel, and caution is recommended in interpreting individual-

difference patterns at this point.   

Here we have assumed that precision is the common factor between the location memory 

task and the running span measure of spatial working memory capacity, and that the lack of 

precision gives rise to bias in location memory.  However another possibility is that it is the bias 

that we observe in location memory also influences performance on the running span task.  This 

seems unlikely because the tasks use very different kinds of displays and responses:  In the 

location memory tasks, a response dot can be placed anywhere on the screen, and the only 

visibly present structure is the edge of the screen.  In the running span task (Figure 3), the screen 

shows a grid with 12 bounded response boxes and participants are asked to indicate in which box 

a dot had appeared, not to remember the location of the dot within the box.  However, it is 

possible that there are systematic biases in the running span task that are ignored by scoring the 

task in terms of overall accuracy, and it is possible that those who show outward bias on one will 

tend to show outward on the other.  To assess this, we analyzed the kinds of errors made to the 

four central squares in the running task.  For each instance in which a square was selected that 

was adjacent to the correct square, we coded it as either a horizontal outward error, a horizontal 

inward error, a vertical outward error, or a vertical inward error.  For example, for the stimulus 

location shown in Figure 3, a response in the box above it was coded as a vertical outward error, 

a response in the box below it was coded as a vertical inward error, a response in the box left of 

it was coded as a horizontal outward error, and a response in the box to the right of it was coded 
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as a horizontal inward error.  Overall, we found no outward or inward bias in responses.  The 

number of outward horizontal errors per participant, M = 1.04, 95% CI [0.96, 1.11], was 

comparable to the number of inward ones, M = 1.01, 95% CI [.93, 1.09], and the number of 

outward vertical errors, M= 1.42, 95% CI [1.33, 1.51],  per participant was comparable to the 

number of inward ones, M= 1.44, 95% CI [1.35, 1.53].   In addition, the degree of outward bias 

for each participant on the running span task did not correlate significantly with model 

parameters from the location memory task (all correlation coefficients between -.05 and .08).   

Thus there is no evidence that the correlations we observe between SWMC performance and 

location memory performance are due to a common underlying bias in spatial memory.  

 

Discussion 

  Previous studies that have examined how age or cognitive constructs relate to spatial 

memory have usually examined error in responses, calculated as the distance from stimulus to 

response (e.g., Lavenex et al., 2015; Olson et al., 2004; Siedlecki & Salthouse, 2014).  The 

present study takes a different approach in that it conceptualizes responses as the product of an 

assembly of information sources, including a noisy memory trace, a spatial organization, and an 

additional fixed bias.  Here we model those components and examine how individuals differ with 

respect to these parameters and what factors may predict those differences. We find that spatial 

working memory capacity predicts category bias and precision: those with higher spatial working 

memory scores tended to have less category bias and greater precision in spatial memory.  

Verbal WMC was a much weaker predictor, suggesting that these findings do not reflect a 

domain general ability to deploy and maintain attention but instead are relatively specific to 

spatial information.   
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The finding that SWMC predicts bias in location memory is predicted by a combination 

of models that treat SWMC as an allocatable resource with the category adjustment model of 

spatial memory.  According to the optimal Bayesian weighting embedded in CAM, categories 

are weighted more heavily, and thus estimates are more biased, when memory is less precise.   

As noted in the introduction, a relation between precision and storage capacity is predicted by 

many models of SWMC, such as resource models (e.g., Bays & Hussain, 2008; Bays et al., 2011; 

Fougnie et al., 2010), updated slot models (Zhang & Luck, 2008), the map-architecture account 

from Franconeri and colleagues (e.g., Franconeri et al., 2013) and a recent model from Lavenex 

and colleagues (Lavenex et al., 2015).  The literatures on spatial working memory capacity limits 

and on bias in location memory have been largely separate even though both invoke the same 

theoretical construct of memory precision, and the connection between these invocations of 

precision has been unexamined.  Integrating these literatures generated a novel prediction that 

bias patterns in location memory would be related to capacity limits.  The verification of this 

prediction confirms that these literatures are addressing related notions of precision and suggests 

the possibility of integrated models that combine capacity limits and rational Bayesian 

adjustment strategies.  

The results presented here validate the core assumption of the Category Adjustment 

Model that category use is proportional to memory precision and establish this effect at the level 

of individual participants.  This is shown by the good fits obtained by including individual-level 

parameters for category use and memory trace precision in the model, by the correlations 

between those parameters among spatial dimensions and across different versions of the task, 

and by the finding that the values on these parameters are predicted by measures of an 

individual’s spatial working memory capacity.  The relation between category use and precision 
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also emerges in group-level data by the finding that category use is greater and precision less in 

the three-dot version than in the single-dot version of the task, and by the finding that within the 

three-dot version, category use is greater for dots held in memory longer.     

However the results also show that there is another source of bias in estimates that is not 

anticipated by the Category Adjustment Model.  We accounted for this by including a fixed 

outward bias factor to capture the tendency to systematically shift estimates inward or, more 

commonly, outward.  Visual examination of the data reported by earlier studies on spatial 

memory biases suggests a general tendency for outward bias (Huttenlocher et al., 1994; 

Crawford & Duffy, 2010), but in most cases has not been explicitly addressed (but see Barth et 

al., 2014).  To our knowledge there is not a compelling theoretical explanation for why estimates 

would be biased further away from an invisible, subjectively imposed internal boundary than 

from the actually visible edges of the spatial frame.  This outward bias is reminiscent of 

caricature effects in the categorization literature (Goldstone, 1996), which would suggest that 

spatial memory may be affected by idealized extremes of left and right, top and bottom (c.f., 

Crawford, Landy, & Presson, 2014).  Our finding that fixed outward bias is related to working 

memory capacity in challenging versions of the dot location task, and that it is correlated with 

category weight, may help to provide a starting point for investigating this bias.   Also, we note 

that the same basic pattern of outward bias emerges in other tasks that rely on spatial placement 

of responses, such as placing numbers along a number line (Landy, Charlesworth, & Ottmar, 

2014).  To the extent that space is used to represent other concepts, such as number and quantity, 

we might expect performance on those tasks to be predicted by the same individual differences 

that predict bias in spatial memory. 
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Investigations of individual differences can serve as a useful complement to the 

experimental research on spatial memory biases.  Rather than taking the variability between 

individuals and throwing it into the error term (Eysenck, 1997), we can use it test predictions 

generated from cognitive theories.  As we seek to understand the component processes that give 

rise to spatial memory bias and other memory phenomena, the natural variation between people 

can steer the development of theory and ensure that the conclusions we draw about cognition on 

the whole also apply to individual minds.  
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Footnotes 

1 We note that some psychophysical models based on Stevens’s power law have also proposed to 

account for biases in spatial estimation (e.g., Barth, Lesser, Taggart, & Slusser, 2014; Hollands & Dyre, 

2000), but they do not account for the effect of longer delays on bias. 

2 We initially also looked at gender because Holden, Duff-Canning, & Hampson. (2014) reported 

that women may show stronger category biases than men.  However we found that gender accounted for 

negligible additional variance beyond age and the two working memory measures, so we dropped it from 

the analyses. 
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Table 1 

Fitted Parameters by Task and Dot 

Task Mean (95%CI) 
precision 

Mean (95%CI) 
category weight 

Mean (95%CI)  
fixed outward bias 

Multi Dot 1 0.16 (0.16, 0.17) 0.18 (0.17, 0.19) 2.90 (2.65, 3.13) 
Multi Dot 2 0.19 (0.18, 0.20) 0.18 (0.17, 0.20) 1.67 (1.43, 1.88) 
Multi Dot 3 0.27 (0.26, 0.28) 0.16 (0.15, 0.17) 0.77 (0.60, 0.94) 
Single Dot 0.61 (0.59, 0.63) 0.04 (0.03, 0.04) 0.40 (0.35, 0.44)  
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Table 2 

Correlations Between Tasks and Spatial Dimensions for Memory Precision (a), Fixed Outward 

Bias (b), and Category Weight (c). 

 
(a) Memory Precision 

 
Memory Precision Single  

Horizontal 
Single  
Vertical 

Multiple 
Horizontal 

Multiple  
Vertical 

Single Horizontal 1 .79*** .55*** .50*** 
Single Vertical  1 .54*** .52*** 
Multiple Horizontal   1 .80*** 
Multiple Vertical    1 

 
(b) Fixed Outward Bias  

 
Fixed Outward Bias Single  

Horizontal 
Single Vertical Multiple 

Horizontal 
Multiple  
Vertical 

Single Horizontal 1 .54*** .31*** .19*** 
Single Vertical  1 .21*** .28*** 
Multi  Horizontal   1 .51*** 
Multi Vertical    1 

 
(c ) Category Bias 

 
Category Bias Single  

Horizontal 
Single Vertical Multiple 

Horizontal 
Multiple  
Vertical 

Single Horizontal 1 .48*** .27*** .25*** 
Single Vertical  1 .23*** .36*** 
Multi Horizontal   1 .34*** 
Multi Vertical    1 
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Table 3 

Individual Variable Predictors of Model Parameters 

Measure Mean  95%-CI Predictor (standardized β) 
   Spatial 

Capacity 
Age Letter 

Capacity 
Single Dot 
Parameter 

Memory 
Precision 

      

   Single Dot 0.61 [0.59, 0.63] .35*** -.12* .06 N/A 
   Multiple Dot 0.17 [0.17, 0.18] .39*** -.04 .14** .37*** 
 
Category 
Weight 

      

   Single Dot .05 [.05, .056,] -.24*** .10 .04 N/A 
   Multiple Dot .15 [.137, .155] -.32*** .03 -.07 .29*** 
 
Fixed Outward 
Bias Factor 

    
 

  

   Single Dot 1.02 [1.01, 1.02] -.10 -.11* -.05 N/A 
   Multiple Dot 1.14 [1.13, 1.16] -.31*** -.03 -.08 .30*** 
* indicates p < 0.004, ** indicates p < 0.0008; *** indicates p < 0.00008.  
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Figure 1. Schematic diagram of biases in the V frame task from Engebretson and Huttenlocher 
(1996) and the rectangular frame from Huttenlocher, Newcombe, and Sandberg (1994). 
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Figure 2: The basic logic of the current paper combines recent findings of a relation between 

precision of memory for a single item and capacity limits with the relationship between precision 

and spatial memory bias, to newly predict a relationship (double line) between working memory 

capacity limits and spatial bias. 
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Figure 3.  A sample stimulus from the running span measure of spatial working memory capacity. 
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Figure 4. Aggregated participant bias against horizontal spatial position.  Although a clear 
category effect is apparent in both the single-dot (left) and multi-dot tasks (right), in both cases 
responses are systematically biased outward from the predictions of the pure category 
adjustment model. 
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Figure 5. Plot of residuals from final fitted model.  As can be seen, the model residuals are quite 
flat across the range of stimuli, consistent with noise in individual judgments.  Slight deviations 
include an s-shape residual near the screen center and skew at the boundaries. Perhaps the most 
salient structure is the diagonal line running approximately through the center of the screen in 
all four plots. This seems to represent trials in which a participant simply placed responses near 
the center of the screen.  Although visually salient, these patterns formed a small proportion of 
overall trials.  
 Horizontal Axis Vertical Axis 
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Figure 6. Rightward bias in responses by horizontal distance from screen center, separated by 
task and dot number. As can be seen, not only does overall error decrease for later dots 
compared to earlier dots, the systematic bias (the slope of the descending line) decreases as well.  
For the single dot case, bias is much smaller than any multi-dot case. 
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Figure 7.  Parameter estimates for individual participants (top), along with response patterns of 
a few selected representative individuals (bottom four panels).  As can be seen, behavior patterns 
of individuals are systematic and variable, with some individuals showing much less use of the 
categories than others, and showing different patterns of inward or outward bias.  
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Figure 8. Working memory and estimated precision. 
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Figure 9. Overall bias patterns for single-dot and multiple-dot tasks, separated by those scoring higher 
versus lower than the group average on the SWM capacity.  
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Appendix 

We modeled participant behavior as the interaction of three parameters: memory 

precision (τ), category precision, (c), fixed outward bias, (f).  The first thing that happens, after a 

stimulus is presented and observed, is that a memory for the stimulus item is constructed.  This 

memory is imperfectly precise, and we capture it as a truncated normal distribution with variance 

1/τ, and truncation at the screen boundary. We assume that fixed outward biasing happens very 

early in processing (Crawford et al., 2014), so that the mean of the memory distribution for a 

stimulus located at position x is sx (see Figure A1). However, fixed bias and truncation were 

independent. 

We assumed that people treated stimuli as being generated by two normally distributed 

categories: one on each side of the (unidimensional) space (see Figure A2). These categories had 

variance 1/c.  These left and right side categories were centered at the midpoints of each side (we 

call this position h, for halfway), and had a fitted precision which varied across participants, tasks, 

and dimensions. The more precise the category, the more informative, and the more Bayesian 

reasoning mandates using the categories. How people construct categories to reflect spatial 

distributions is a topic of general interest, but was not central to the investigation here. Worth 

noting, however, is that the actual stimuli were uniformly presented withing the interior 85% of 

the screen, not by normally distributed categories. 

When both category and memory representation are normal, the theoretically optimal 

balance of categorical and instance information is given by the normal-normal model 

(Huttenlocher, Hedges, and Vevea, 2000). The result is a normal distribution with mean 
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Where b is the category bias, given by  

, 

and the fraction serves to set the sign of the fixed bias, f. 

 

The precision of the resulting normal is given by 

 

 

We assumed that people sampled form this normal distribution to general the given 

responses.  Of course, this assumes people know which category the item belong in, which near 

the center of the category is not given. The model considered the probability of correct 

classification to be equal to the proportion of the memory distribution which was on the correct 

side of the screen middle.  Because the model is generative, this means that the prediction is is 

that some proportion of the time, the model biases leftward, and the remaining time rightward; 

The proportion is given by the relative densities of the category distributions, which near the 

midline is not close to 0 or 1.When an item is miscategorized, it biases toward the far category. 

Thus, items in the middle are expected to show less mean bias than items closer to category 

centers. 

Close examination of the residuals reveals some remaining systematic structure near the 

midline, and near the edges of the screen. This residual structure suggests that the current model 

is imperfectly capturing behavior, though it dramatically improves over the pure outward bias or 

b =
c

c+ ⌧

M = bh+ (1� b)x+ f

|x|
x

p = ⌧ + c
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pure CAM models.  As mentioned in the main text, we regarded the model fits to be adequate at 

this point, though certainly there is more left to do. 
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Figure A1.  Effect of outward bias on memory trace.  Outward bias systematically moves the 
mean of the trace distribution outward by a fixed amount. It does not alter the shape of the 
distribution. 
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Figure A2. Summary of the category adjustment component of the model.  Responses are 
adjusted away from the (already biased by fixed outward bias) stimulus location, in the direction 
of the nearest category, through a weighted average of the mean of the two distributions. 
Category weighting is increased by precise categories, and decreased by precise spatial memory 
traces.  Near the midline of the screen, the stimulus is adjusted toward both categories, weighted 
by the proportion of the memory trace that is best-fitted by each category.    
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