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Abstract 

How does the physical structure of an arithmetic expression affect the computational processes 

engaged in by reasoners?  In handwritten arithmetic expressions containing both multiplications and 

additions, terms that are multiplied are often placed physically closer together than terms that are 

added. Three experiments evaluate the role such physical factors play in how reasoners construct 

solutions to simple compound arithmetic expressions (such as “2 + 3 x 4”). Two kinds of influences 

are found: First, reasoners incorporate the physical size of the expression into numerical responses, 

tending to give larger responses to more widely spaced problems. Second, reasoners use spatial 

information as a cue to hierarchical expression structure: more narrowly spaced sub-problems within 

an expression tend to be solved first, and tend to be multiplied. Although spatial relationships 

besides order are entirely formally irrelevant to expression semantics, reasoners systematically use 

these relationships to support their success with various formal properties.   

 

Keywords: symbolic reasoning, mathematical cognition, embodied cognition 
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INTRODUCTION 

One of the central challenges facing the cognitive study of mathematical reasoning is symbolic 

interpretation: how do people use symbol systems as carriers of meanings? In the domain of 

mathematics, as in other formal languages, explicit grammars specify how compound expressions are to 

be interpreted in terms of their basic constituents. Despite the simplicity and explicitness of these rules, 

numerous studies have noted that difficulties generating solutions from mathematical expressions often 

result from failures to correctly interpret symbolic notation (Koedinger & MacLaren, 1997; Koedinger 

& Nathan, 2004; Sfard & Linchevski, 1994).  

Cognitive theories of abstract formal interpretation often assume that individuals follow formal logics 

by explicitly representing rules of combination in some internal symbolic medium, and then applying 

those rules to structured symbolic representations (Fodor, 1975; Marcus, 2001). In this view, the role of 

perception is principally to identify and represent for internal consumption individual symbols written in 

the external notation. If interpretation of structured notations is a result of the application of formally 

expressed rules, then expressions that require more, or more difficult, rules are predicted to be harder to 

solve than simpler expressions, but perceptual factors should only affect the transcription of individual 

symbols from the visual notation to an internal representation. Thus, the hierarchical structure implicit in 

a phrase such as “3+5x4” results from the action of a set of represented rules. 

In addition to their formal properties, commonly used notational systems have many informal 

properties. The properties we are most interested in are those that relate pairs or sets of symbols: pairs of 

symbols may be similar or dissimilar, or one symbol may be larger or more salient than another, or 

physically close together or far apart. This paper focuses on the impact of physical spacing on arithmetic 

computation of simple expressions involving addition and subtraction. There are several reasons to 

expect spatial properties to impact arithmetic computations. First, prior work has shown that spatial 

properties interact with mathematical reasoning in related but distinct domains (Kirshner, 1989; Landy 
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& Goldstone, 2007A).  Second, spatial layout affects other psychological properties of expressions, such 

as overall physical size and perceptual groupings.  Finally, spatial properties are an obviously essential 

part of any physical notation system, but in mathematics in particular, layout plays an important role in 

constituting meaning.  For instance, subscripts and superscripts depend on their spatial positions and 

sizes for appropriate interpretation.  Even when spacing is not formally required for interpretation, 

conventions often govern typical spacing. 

Syntax evaluation in formal languages is well-captured by rules expressed in abstract languages, as 

suggested by traditional cognitive theory.  However, several authors have suggested that the actual 

process of syntactic parsing in human reasoners is often organized around visual principles, and 

implemented by largely visual and motor mechanisms (Endress, Scholl, and Mehler, 2007; Landy & 

Goldstone, 2007A, 2007B). These mechanisms are proposed to be subject to the same constraints and 

biases as the rest of the visual system, and to produce sharply limited kinds of grammars, consonant with 

the biases of the visual system.  The question is not whether symbolic or visual processes are important 

in mathematics; clearly both are.  Rather, the question is one of where and how formal grammatical 

interpretations occur in the adult interpreter.   

It is very plausible and usually assumed in cognitive models that the role of vision is limited to 

symbol identification, and precedes substantive symbolic processing. This perspective suggests that 

physical layout, so long as it does not interfere with the identification of symbols, should have no effect 

on arithmetic computation. Although not essential to any particular theory, this view has generally 

served as a default in discussions of symbolic reasoning (e.g., Anderson, 2005; Koedinger & MacLaren, 

1997; Stenning, 2002).  That is, many models of mathematical reasoning, assume that the initial 

representation for symbolic transformation is a straightforward transduction of the presented notation.  

Such models do not a priori predict any result of spacing on performance. 
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Kirshner (1989; see also Kirshner & Awtry, 2004) found evidence that novel notations for basic 

arithmetic operations are learned more easily when they conform to certain spacing practices. In 

particular, Kirshner reports that learners more easily applied order of operations rules (e.g. multiplying 

and dividing before adding and subtracting in an expression) when high-precedence operations were 

more closely spaced. Kirshner suggests that this spacing convention closely approximates that found in 

typical mathematics notations and that our knowledge of operation ordering is bound to the features 

(proximity, in this case) that generally correspond to them.  On this view, it is the regularity of physical 

features in the environment that leads to the connection between close spacing and multiplication.   

Kirshner and Awtry (2004) propose the image of a hybrid learner, able to learn declarative rules, but 

also (and largely separately) sensitive to statistical environmental regularities, such as visual similarities 

and proximities. 

Landy (2007; see also Goldstone, Landy, and Son, 2009) suggests an alternative conceptualization of 

the role of space in formal computation.  This perspective suggests that rules in symbolic environments 

are themselves often implemented by low-level visual-motor processes.  Visual regularities are then 

involved in algebraic reasoning because visual processes form the primitive operations that together 

constitute syntactic reasoning, rather than because regularites are typically present in an environment 

that receives the attention of a general statistically sensitive (e.g., connectionist) learner.  Landy (2007) 

formalized this idea in a computational model of arithmetic computation.  In this model, practiced 

arithmetic computation is treated as an interplay between obligatory calculation processes, visualization, 

and pro-multiplication biases in visual attention and grouping.  When people look at pairs of numbers, 

both their sums (LeFevre et al, 1988) and their products (Thibodeau, 1996; Rusconi et al, 2006) are 

automatically activated. The model assumes that similar automatic processes govern calculation in 

complex expressions: sub-problems that receive the most attention are most likely to activate their 

solutions.  Individual problems are coded in terms of both perceptual and categorical features, including 
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operands and operations, but also including vertical symmetry (a distinctive property of “tie” problems 

such as 7+7) and well-groupedness.  These features drive the obligatory activation of sums and products.  

On this account, explicit knowledge of the rules of precedence does not drive ordinary computation 

behaviors. Multiplications form better perceptual groups, and the signs denoting multiplication in 

arithmetic better attract attention. Both of these factors cause multiplications to be performed earlier 

than additions, which ensures that the order of operations is typically respected. Further supporting this 

perspective, Landy & Goldstone (2007B) demonstrated that, in addition to spacing, other properties that 

bias perceptual grouping (such as similarity, connectedness, and common region) also impact accuracy 

in algebra.  These properties as such are not typically present in algebraic expressions, or at least do not 

seem to be correlated with formal computation order; nevertheless, they impact both visual grouping and 

overall accuracy in an algebra task.    

Spacing of addition and multiplication signs in typical contexts 

This paper comprises an empirical exploration into how variation in the spacing of arithmetic 

expressions involving addition and multiplication affects computation; it is worth noting briefly how 

such expressions are typically spaced in ecological contexts.  This issue is somewhat complicated by the 

fact that although addition is typically represented with a + in formal contexts, there are at least four 

common conventions for multiplication.  In algebra, multiplication is usually denoted by concatenation, 

as in 

€ 

ax + b, in which no operation sign is used at all, or the dot, as in 

€ 

a⋅ x + b.  In handwritten and 

typeset arithmetic, the cross ( ) seems to be more typical than the dot (and concatenation is ambiguous); 

in computer languages, the asterisk * is frequently used to represent multiplication. 

Algebraic notations tend to space multiplications substantially closer than additions.  Omitting an 

operation sign naturally causes the operands to be placed quite close together; mathematical typesetting 

programs such as LaTeX also typically place the operands surrounding a dot closer together than those 

around a +.  Thus, in algebra, multiplications are typically closely spaced, relative to additions. 
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In arithmetic, this pattern is not so clear-cut.  The cross sign, which is used nearly universally in 

textbooks and in programs such as LaTeX, is generally spaced uniformly with the + sign, as in 

€ 

5 × 3+ 2. 

Landy and Goldstone (2007A) reported that in handwritten expressions, cross signs predominated in 

arithmetic expressions, and were spaced significantly more closely than additions, and furthermore that 

this difference was greatest when the two appeared in the same expression.  The mean difference 

reported by Landy and Goldstone was very small, however.  Numbers surrounding addition signs were 

separated by an average of 9.65mm, multiplications by 9.27mm—a difference of just 0.38mm.  The 

typical spacing of asterisks in computer programs is currently unknown, but is unlikely to be a major 

source of arithmetic experience for typical undergraduates in the psychology pool, the population 

examined here.  Thus, the contexts likely to be the most typically experienced by the arithmetic 

reasoners studied in these experiments—textbooks and handwritten expressions—contain only very 

slight biases to space cross signs more closely than plus signs.  

Since across the range of contexts, multiplications tend to be more closely spaced than additions, we 

will refer to this variety of spacing as consistent spacing; we will refer to spacing as inconsistent when 

additions are more narrowly spaced than multiplications, regardless of the operation sign.  

Error types and measures  

In the following three experiments, college undergraduates were asked to evaluate simple expressions 

with various physical spacings. The solutions and solution times were recorded and analyzed. Because 

the theoretical considerations predict errors of particular types, we also analyzed the particular kinds of 

errors participants made. We analyzed three types of errors: operation errors, operand errors, and 

precedence errors.   

One frequently found error type on single operation problems (Ashcraft, 1992) is an operation error, 

in which the answer given is the correct answer to a problem that differed from the stimulus only in its 
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operations. For instance, a response of 18 to the stimulus 

€ 

3+ 2 × 3 is considered an operation error, 

because the answer given would be correct, if the + operation were substituted by a ×.   

If the given response was the correct solution to any problem with the same operations, in which one 

operand was different from that in the stimulus by no more than two, that response was classified as an 

operand error. In the previous example, , a response of 12 would be considered an operand 

error because it is the correct response to 

€ 

3+ 3 × 3. 

Errors were classified as precedence errors when the response was that that would be obtained by 

performing the correct operations on the correct numbers, but in the wrong order. A response of 20 to 

the stimulus  would be coded as a precedence error, because .  

Most errors could be coded as one of these three types. Of the remaining errors, most appeared to be 

typing errors (e.g., writing 118 or 1118 for a problem whose correct result was 18). These uncoded 

errors were excluded from all analyses.  Some errors (particularly in Experiment 2) were compatible 

with multiple error definitions; for instance, a response of 12 to 3+3×2 could be coded as either a 

precedence error (12=(3+3) ×2), or as an operand error (12=3+3×3).  Analyses were performed both 

across all errors consistent with a particular type, and also using only those that could be uniquely 

classified. Results were very similar for each measure.  The more inclusive measure is reported; the 

more restrictive measure yielded similar results, except where noted.   

Across all three experiments, median response times for participants were fairly normally distributed, 

and could be analyzed using analyses of variance. Error rates, however, were quite low; the distribution 

of overall accuracy across participants did not follow a Gaussian distribution.  Since many participants 

made few or zero errors of particular types, and in particular conditions, arcsin transformed error rates 

did not generally approximate normal distributions either.  Error patterns were analyzed using non-

parametric categorical tests.  Counts of each error across each stimulus type were generated for each 

participant.  The effect of condition on error was evaluated using a Wilcoxon signed-rank test. To 
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evaluate the selective influence of consistency, McNemar’s test was used.  In Experiment 2, which has 

consistent, neutral, and inconsistent spacing conditions, a nominal value was generated for each error 

type and participant, based on whether error frequency was ordered across the three consistency 

conditions: error(consistent trials)  error(neutral trials)  error (inconsistent trials). This measure is 

appropriate for McNemar’s test because it generates binary values.  

Spacing and simple arithmetic 

Experiment 1 explores the role that contrastive spatial information plays in the evaluation of single 

computations; Experiments 2 and 3 extend these phenomena to multi-term problems.  

Neither the default rule-based model nor the perspective that computation rules are composed of 

learned perceptual biases makes any predictions in the single-term arithmetic case.  The former model 

predicts no influence of spacing on performance at all; the latter predicts such influences only when 

there are multiple expressions, that can lead to differences in grouping or computation order.  

Nevertheless, there are sound theoretical reasons to expect differences in computation in this case, 

related to both the physical and the internal representation of numbers and number facts. 

As mentioned earlier, although the signs used here (typewritten + and × signs) are most typically 

nearly uniformly spaced, across the range of notations and contexts, multiplication signs are more 

closely spaced than addition signs. If reasoners incorporate the typical relative spacing of an operation 

(as opposed to the typical spacing of an operation sign) into their representation of the sign, then 

narrowly spaced addition problems might tend to be confused with multiplication, and vice versa, 

leading to increased operation errors when problems are consistently spaced.   

In contrast, metaphor theory (Lakoff & Nuñez, 2000) asserts that numerosity is often processed via 

metaphorically related representations of physical length.  On this view, a representation of perceived 

physical length might affect arithmetic judgments, such that large spaces would tend to be conflated 

with large numeric magnitudes. Estimates of numerosity have been shown to be subject to this sort of 
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size-congruity effect (Henik & Tzelgov, 1982, Choplin & Logan, 2005; Fitousi & Algom, 2006), and to 

affect spatial judgments (de Hevia et al, 2006).  

Along these lines, several researchers (e.g., Hubbard et al, 2005) have suggested that numbers are 

represented along a log-compressed linear mental space, such that larger numbers are “farther” from 

zero than smaller numbers are; computation is interpreted as motion along that mental number line.  

McCrink, et al (2007) report systematic errors in addition and subtraction computation, consonant with 

this suggestion, which they attribute to “operational momentum.” Additions tended to be overestimated, 

subtractions underestimated. This is predicted by the mental number line account, if when transforming  

a number by moving through a representation space, people tend to over adjust—to move too far.  

In our case, one might expect reasoners to use the physical spacing of the operators as an implicit cue 

to the distance along the number line that they should “move” when computing a value. In experiment 1 

the product of two numbers tends to be larger than the sum of those same numbers. This consideration 

predicts that people would be more likely to add when operations are narrowly spaced, and to multiply 

when they are widely spaced, predicting more rather than fewer operation errors when problems are 

consistently spaced.  Similarly, this hypothesis, which we will call the longer is larger hypothesis 

predicts that people would generate a response that is slightly too large, or slightly too small, e.g., 

computing 15 for the narrowly spaced 7+9.   

EXPERIMENT 1 

Method 

Participants 

48 undergraduates at the University of Illinois received partial course credit for participation in this 
experiment.  
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Procedure 

Some aspects of procedure are common to all three experiments presented here.  In each experiment, 

participants were seated in front of a computer, and shown simple arithmetic problems one at a time, in a 

random order unique for each participant. Symbols were presented in the LeHei Pro font on Apple 

Macintosh computers.  All displayed symbols were 14mm wide.  For narrowly spaced problems, the 

space between the operands was 40mm (including the operation sign). For widely spaced operations, 

inter-operand spacing was 100mm.  The viewing distance was approximately 55cm.  

Problems stayed on the screen until the participant began typing a response. Responses were typed; 

response times were collected from the first key-press.  A 1500ms rest period followed, followed by the 

next stimulus.  Participants were instructed to perform their calculations quickly, but the problems were 

self-paced.  Participants received breaks every 10 minutes. 

In Experiment 1, stimuli consisted of single addition or multiplication problems.  Operands ranged 

from 3 to 8; participants solved each problem in this range twice. Once, the problem was presented with 

narrow spacing, as in 3+5; once, it was presented with wide spacing, as in 3   +   5. There were a total of 

144 problems. The experiment took approximately 15 minutes to complete.  

Results 

 
Mean accuracy was  across all trials.  Mean correct-trial response time was .  

Using operation sign (plus or times), and spacing (narrow or wide) as categorical predictors and problem 

size (the larger of the two operands) as an ordinal predictor, a 2 × 2 × 6 ANOVA on median response 

time revealed a significant main effect of problem size (F(5,235)=15.5, p<.001) and operation 

(F(1,46)=7.73 p<.01).  Operation and problem size also interacted, such that the response time for 

multiplication problems increased more with magnitude than did for addition problems (F(5,235)=4.29, 
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p<.001). There was no detectable interaction between spacing and operation type, F(1,46)=0.5, nor a 

main effect of spacing F(1,46)=.09).     

 

Error Analysis 

The theoretical considerations did not predict an effect of spacing on errors overall, but on patterns of 

particular kinds of errors.  To evaluate these patterns of errors, we coded the incorrect solutions.  Of 282 

errors, all but 71 could be uniquely identified as operation or operand errors.  Of the remaining errors, 

nearly all appeared to be typographical errors, and were eliminated from analysis.  Overall, the 

magnitude of errors was larger for widely spaced problems. Averaging the difference between response 

and the correct answer for each subject in each spacing condition revealed that responses tended to be 

larger than the correct value for widely spaced problems, but smaller for narrowly spaced problems 

( , p<.01). Within the types, operation errors were numerically more frequent on consistent 

than inconsistent stimuli, , p<.05. That is, in accordance with the longer is larger 

hypothesis, smaller problems were more frequently summed than were physically larger problems. 

Operand errors in addition also matched the pattern predicted by this hypothesis: errors that were within 

1 or 2 of the correct result tended to be smaller when the expression was narrowly spaced than when it 

was widely spaced, , p<.05; see Table 1.  Operand errors in multiplication were not well 

predicted by spacing ( , p~.49). 

 

(Table 1 around here) 

 

Discussion 

When operations appeared singly, spatial structure had a systematic effect on computation. Consistent 

spacing caused increased operation confusions.  This is the reverse of what would be expected if 
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algebraic spacing conventions were biasing interpretations, but is quite in line with the longer is larger 

hypothesis: bigger, wider operations are more readily interpreted as more powerful operations with 

bigger results.  Similarly, additions were systematically biased by the size of the space, so that computed 

sums were larger when spaces were wide.  This is, again, consistent with the overall notion that longer 

suggests larger.  This effect appeared only in the addition operation, and not in multiplication.  One 

possible reason why the effect of size might be selective is that while additions are frequently assumed 

to be computed by manipulations of the mental number line, multiplications are most often either 

retrieved, or computed through routine processes that may not as strongly involve magnitude 

representations (Smith-Chant & LeFevre, 2003).  The processes involved in computing multiplications 

are relatively insensitive to the magnitude of the result (Harley, 1990; Whalen, 2000). 

Experiment 2 explores the effect of differential spacing on computations of more complex (two 

operation) addition and multiplication problems presented in the horizontal format. Problems such as 

3+4×7 contain at least two features making them more complex than single-operation problems.  At the 

formal level, reasoners must parse the expression correctly (i.e., as 3+(4×7) rather than (3+4)×7).  This 

requires the reasoner to correctly respect the order of operations.  At the physical level, sub-problems 

within a compound expression may be spaced differently from each other.  While Experiment 1 also 

contrasted widely and narrowly spaced problems, this within-expression variation means that one 

problem can be grouped together spatially, meaning that the other problem is then ungrouped. In 

Experiment 1, problems to be solved always formed good visual groups (since they appeared alone).  In 

Experiments 2 and 3, it sometimes happens that problems that should be processed early form poor 

visual groups.  

The visual account presented above (see also Landy, 2007) predicts two effects of this differential 

grouping: first, and in line with previous results in algebra and novel arithmetic notations, the effective 

order of operations rule employed in parsing is likely to be affected by grouping, such that closely 
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spaced operations are likely to be applied first, resulting in increased order errors in inconsistent spacing 

conditions.  Second, because reasoners have a pro-multiplication attentional bias, problems that tend to 

attract attention (such as well-grouped expressions) will tend to be treated as multiplications.  Thus, the 

visual primitives account predicts that in contrast to the simple expressions used in Experiment 1, in 

compound expressions narrowly spaced problems will tend to be multiplied and widely spaced problems 

added.  

Studies measuring performance on single-operation problems (see Ashcraft, 1992) typically measure 

values for the entire range of problems with operands from around 2 to 9; these small-value problems 

are heavily studied in school, and solutions have often been memorized. In order to evaluate operation 

order behavior, two-operation problems are, of course, necessary. However, there are many low-operand 

two-operation problems; Experiments 2 and 3 sample this range. Experiment 2 explores the effects of 

spacing on problems with very small operands (2 to 4), while Experiment 3 measures the impact of 

spacing on problems with a mixture of small and large numerical magnitudes. 

 

 

EXPERIMENT 2 

Method 

Participants 
55 undergraduates at Indiana University received partial course credit for participation in this 

experiment.  

Procedure 

The procedure was very similar to that of Experiment 1; only the problems evaluated by participants 

differed.  After a brief warm-up of uniformly spaced single-operation problems, participants solved a set 

of 216 expressions. Each expression contained two operations, which could be either addition or 
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multiplication. The four operation structures tested are summarized in Table 2. Every participant solved 

every combination of these operations over the operands 2, 3, and 4 (except those with three identical 

operands), once in each of three spacing conditions. These conditions differed in their physical layout: in 

the narrow-first condition, the left-hand terms were spaced more closely than those on the right, as in 

. In the wide-first condition, the left-hand terms were spaced more widely, as in . 

Finally, in the even condition, both operations were identically and intermediately spaced. All symbols 

were 14mm wide, and were presented in the LeHei Pro font.  For narrow problems, the space between 

the operands was 40mm (including the operation sign).  For neutral, the inter-operand spacing was 

50mm.  For widely spaced operations, inter-operand spacing was 100mm.  Notice that evenly spaced 

problems occupied total of 142mm, but in the uneven conditions, the total horizontal extent was 182mm. 

Participants were reminded of the order of operations rule, and shown an example of its application 

before beginning the task.   

 

(Table 2 about here) 

 

Results 

Response Time  

Figure 1 shows the mean time to first key press of correct responses in each analyzed problem 

condition. Median response times were computed for each participant and condition, and were analyzed 

with a 4 (operator order: plus-plus, times-times, plus-times and times-plus) × 3 (spacing: narrow-wide, 

neutral, and wide-narrow) ANOVA using operation structure and spacing as categorical independent 

factors. In this coding, spatial-operation consistency appears as an interaction. This interaction was 

significant (F(6,324)=10, MSE=1.1, p<.0001).  As can be seen in Figure 1, the interaction was due to 
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problems in which the order of precedence differed: plus-times and times-plus problems.  These were 

solved more quickly when the spacing was consistent with the order of operations.  For problems in the 

times-plus order, wide-first problems took longer than other types; for problems in the plus-times order 

wide-first problems were fastest. There was also a significant main effect of problem type (F(3, 162) = 

68, MSE=21.4, p<.0001), such that, generally, times-times problems took substantially longer to solve 

than other problems. 

To verify that the results in median response time did not result from different accuracy patterns across 

problems in the various conditions, an items analysis was performed on all plus-times and times-plus 

problems.  An “item” was defined as a particular formal problem, regardless of spacing.  Thus, spacing 

constituted a within-items condition, and operation type a between-items condition.  The ANOVA 

revealed a significant interaction between spacing and operation structure (F(2, 70)=33.6, MSE=27.7, 

p<.0001).  Thus, across the range of items, problems were solved more quickly when they were 

consistently spaced. 

 

(Figure 1 about here) 

 

Errors  

All problems, including plus-plus and times-times trials, were included in the error analysis. In total, 

1180 incorrect responses were recorded. 908 of these errors fit at least one of the three error types: 

operand errors, operation errors, or precedence errors. The remaining 272 unclassified errors appeared to 

be primarily typing errors (e.g., writing 118 for a problem whose correct result was 18).  359 errors 

could not be uniquely categorized (i.e., the same response could result from multiple errors) leaving 549 

uniquely classifiable errors  
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Operation errors were explored by counting errors made by each participant on consistently, neutrally, 

and inconsistently spaced simple expressions.  For times-times and plus-plus problems with uneven 

spacing, one problem is “consistent” while the other is “inconsistent.”  That is, for a problem such as 

3+3  + 4, a response of 15 (3+3×4) would constitute an operation error on a consistent expression, while 

a response of 13 (3×3+4) would constitute an operation error on an inconsistently spaced expression.  

Participants made more errors on inconsistently spaced stimuli than either neutrally (

€ 

W+(42) = 856 , 

p<.001) or consistently spaced (

€ 

W+(43) = 899 , p<.001).  Consistent and neutral error rates did not differ 

(

€ 

W+(37) = 391, p~.55). This pattern held even when considering just problems with identical operations.  

On times-times and plus-plus problems, more errors were made when spacing was inconsistent than 

when it was neutral (

€ 

W+(31) = 484.5 , p<.001) or consistent (

€ 

W+(31) = 455.5 , p<.001).  The latter two 

error rates did not differ (

€ 

W+(16) = 37 , p<.1154). 

Precedence errors also generally increased as spacing grew more inconsistent. 18 participants made 

more precedence errors on consistent than inconsistent problems, while only 1 participant did the 

reverse (the remaining participants made identical numbers of errors in both spacing types). The three 

problem types were well separated: participants made more errors on inconsistent than neutral 

expressions (  p<.05) and more errors on neutral than consistent expressions, 

(  p<.01). The difference between inconsistent and consistent errors was also significant 

(  p<.001).  Although participants made more errors overall on inconsistent than consistent 

expressions (see Figure 2), the relationship between precedence and consistency was particularly strong.  

Precedence errors were ordered by consistency for 42 of the 55 participants, but non-precedence errors 

were ordered for only 23 participants.  Precedence errors related more strongly to spatial consistency 

than non-precedence errors by a McNemar’s test ( , p<.001). 

 

(Figure 2 about here) 
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Participants made more errors overall on plus-times than on times-plus stimuli ( , 

p<.001), suggesting a tendency to evaluate expressions from left to right, consistent with reading order.  

Also, operation errors were more common with operations in a right-biased order (additions on the left 

and multiplications on the right), than those in a left-biased order ( , p<.001). 

When all errors were included, participants were significantly biased toward the overestimation of 

widely spaced, and the underestimation of narrowly spaced operations ( , p<.01). 

Inspection of the error patterns indicated that operand errors could frequently also have resulted from 

order reversals; an influence of spacing on computation order could have accounted for the bias on result 

magnitude, Indeed, when only operations which could be uniquely coded were included, this bias was 

not significant ( ).  

 

Discussion 

 

The alignment of space and precedence demonstrated previously in algebra (Landy & Goldstone, 

2007) and arithmetic using an invented notation system (Kirshner, 1989), was replicated here using 

standard arithmetic notation. When operation precedence and spatial proximity conflicted, arithmetic 

computations were substantially more difficult than when they were congruent. Error analysis indicated 

that precedence was particularly sensitive to consistency, as had been previously reported. 

Operands were also more likely to be summed when widely spaced, and to be multiplied when 

narrowly spaced, supporting the theory that reasoners encode information about operation spacing, and 

use it to select operations. These are striking errors because they reflect misperceptions of clearly 

presented expressions.  This is predicted by the visual primitives account, because easily grouped, early 

performed computations tend to be multiplications.  A similar account can be motivated from general 
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statistical sensitivity to conventional notations, assuming that reasoners generalize spacing regularities 

by operation across symbol (that is, from the typical multiplication symbols of algebra).  However, this 

account does not easily accommodate the pattern in the single-operation case examined in Experiment 1. 

In the visual account, errors depend on comparative grouping, a property that does not exist in single-

operation expressions, rather than on the statistical presence of differential spacing.  Since the error 

pattern found here is the opposite of that found in Experiment 1, which had similar notational 

considerations but different grouping properties, we conclude that the increase in operation errors found 

for widely spaced multiplications and narrowly spaced additions results from the grouping created by 

the differential space, rather than spacing per se.  

Finally, error measures show a general bias favoring the times-plus format: participants are accurate 

on these expressions than on plus-times expressions, and are more likely to treat an operation as a 

multiplication if it appears on the left. 

Experiment 3 serves primarily as a replication of Experiment 2 with operands that come from a larger 

range. The same hypotheses are tested, in largely the same format. The problem set presented to 

participants is different, however, permitting an evaluation of the particular materials employed in 

Experiment 2, and verifying that the results are not particular to that problem set.  Since the effect of 

spacing on operation errors reversed direction between experiments 1 and 2, it seemed prudent to verify 

that the latter effect was robust to other small changes in format.   Furthermore, the use of larger 

numbers (up to 9) provides a better window onto error patterns, because particular responses are less 

likely to be compatible with multiple errors.  Furthermore, each participant solved a particular sub-

problem (e.g., 4 × 2) fewer times in Experiment 3 than in Experiment 2.  Finally, while in Experiment 2, 

half of all problems could be solved by performing either the left or the right computation first, in 

Experiment 3, all problems contained one addition and one multiplication; thus the order was entirely 

specified by the rules of precedence.  On the other hand, this implies increased redundancy: participants 
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could use the identity of the left-hand operation to constrain the right-hand operation.  In Experiment 2, 

the operations were independent.  Despite these procedural differences, the general account of 

computation ordering as rooted in processes of attention and grouping predicts similar resuls in 

experiments 2 and 3.  

EXPERIMENT 3 

Method 

Participants 

38 Indiana University undergraduates received partial course credit for participation in this 

experiment.  

Procedure  

The experiment design and procedure were identical to Experiment 2. Stimuli were similar to 

Experiment 2, but only the times-plus and plus-times operation structures were included, and evenly 

spaced stimuli were dropped.  The operands systematically varied in magnitude. The middle operand 

was always 3 or 4. Each outer operand could be independently small (2 or 3) or large (6, 8, or 9), 

providing compound expressions with a range of sizes and difficulties.  All problems satisfying these 

criteria were presented, once in each of the consistent and inconsistent spacing conditions.  In all, each 

participant saw 200 expressions in a unique random order. The experiment took about 45 minutes to 

complete. 

Results 

 

Response Time  

The larger of the two outside operands was used as a measure of problem size. A 2 (operation order: 

times-plus or plus-times) × 2 (spacing: narrow-wide versus wide-narrow) × 5 (problem size) ANOVA of 
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participants’ median correct-trial response times was performed.  The analysis revealed a main effect of 

operation order (F(1,37)=12.0, MSE=2.1, p=.001; see Figure 3), such that problems that had to be 

computed from right to left (that is, plus-times problems), and of problem size 

(F(4,148)=69.6),MSE=56, p<.001), such that problems with larger operands took longer to solve.  

Consistency—the interaction between spacing and operation structure—also impacted response time 

(F(1,37)=27.5, MSE=7.1, p<.001).  No other effects approached significance.  In particular, the three-

way interaction between spacing, structure, and problem size was not significant (F(4,148)=.53, p~.72). 

To verify that the results in response time were not due entirely to a distribution of errors across 

problems of different sizes, an items analysis identical to the ANOVA reported in the previous 

paragraph was performed, grouping all stimulus items that represented a particular formal problem, 

regardless of order and spacing.  The analysis confirmed a significant interaction between operation 

order and spacing (F(1, 49)=14, MSE=147, p<.001).    

 

(Figure 3 about here) 
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Errors Analysis  

Once again, errors were classified as operation errors, operand errors, and precedence errors. These 

errors made up 1001 (70%) of all 1421 recorded errors. Most of the remaining errors appeared to be 

“double errors,” in which two errors were made on the same problem; most of the rest appeared to be 

typos. It should be noted that the ability to uniquely identify error types increases with the magnitude of 

the operands. For instance, 10 was a common response for the smallest problem tested, . This 

could result from a precedence error, because , but it could also result from an 

operand error, because . 

 
(Table 3 about here) 

 
 
As in Experiment 2, both precedence and operation errors were more common on inconsistently than 

consistently spaced stimuli (precedence errors: , p<.01, operation errors: , 

p<.001) and once again, operand errors were not ( ; see Table 3).  According to a 

McNemar’s test, the relationship between precedence errors and consistency was greater than that 

between consistency and all non-precedence errors ( , p<.05).   

 

(Table 4 about here) 

 

Participants made significantly more operation errors on trials with additions on the left and 

multiplications on the right than the reverse ( , p<.05; see Table 4).   

Finally, the longer is larger hypothesis was not supported in this experiment.  Participants did not 

systematically undestate the value of narrowly spaced problems, nor overstate the value of widely 

spaced problems ( ). 
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Discussion 

Experiment 3 successfully replicated the primary findings of Experiment 2. Experiment 3 employed a 

different set of stimuli, larger operands, and a different collection of spacing and operation structures 

than Experiment 2, but in both cases alignment of proximity and operation order increased overall 

accuracy, decreased accurate-trial response times, and decreased specifically precedence and operation 

errors. Experiment 3 verifies that the differences in operation errors between Experiments 1 and 2 did 

not result from the particular selection of problems involved in Experiment 2. 

In general, errors increased with the magnitude of the operands, particularly errors associated with 

retrieving values for memorized operations (operation and operand errors). Precedence errors were 

mediated by spacing, but were relatively insensitive to operand size in this study. This suggests that 

order of operation evaluation is executed largely independently of the calculation itself. 

GENERAL DISCUSSION 

Spacing plays a substantial and varied role in determining how undergraduate students solve simple 

arithmetic expressions.  Across three studies, participants were sensitive to the relative spacing of sub-

problems within an expression.  Spatial information affected computation in two substantially distinct 

ways: at the level of individual computations, and at the level of expression structure.  At the level of 

expression structure, people preferentially grouped terms when they were placed close together.   In 

other words, participants were more likely to execute a calculation relatively early, and to multiply, 

when the participating symbols were relatively closely spaced.  At the level of individual computations 

(Experiment 1), spacing systematically affected the direction of calculated results, so that wide spaces 

caused calculated response to be larger than the correct result.  
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Spacing affects participants’ executed formal structure in computation: participants tended to calculate 

operations early if they were closely spaced.  This by itself replicates in standard arithmetic results 

found by Landy and Goldstone (2007B) on an algebraic validity task, and Kirshner (1989) on an 

alternative-notation arithmetic task. The current results go beyond previous research in two ways: first, 

prior work demonstrated effects of grouping in systems (algebra, or invented notation systems) which 

reliably incorporate spacing information.  In arithmetic, in contrast, spacing information is often neutral 

or misleading.  Although people tend to space more tightly grouped operations very slightly more 

closely (Landy & Goldstone, 2007A), typeset sources such as elementary school textbooks and LaTeX-

formatted documents typically do not differentially space the plus and cross signs. Nevertheless, the 

current results demonstrate that people incorporate spacing into operation ordering even when it is only 

occasionally present and generally unreliable.  Secondly, while both Kirshner (1989) and Landy and 

Goldstone (2007B) showed that spacing influences precedence errors, the current work demonstrates 

additional specific behaviors that are impacted by spacing. Participants are guided by the spacing not 

only in the order in which they apply operators, but also in the identification of individual operations: 

spacing is used as a cue to operation type.  The influence of this cue depends on the global structure of 

the embedding problems, or problem set.  If spacing causes differential grouping in the larger expression 

(Experiments 2 and 3), then close spacing implies multiplication; when it does not (Experiment 1),  

widely spaced (and consequently longer) operations suggest multiplication. Neither of these error effects 

is readily predicted by traditional models of either single or compound arithmetic computation, nor has 

either been to our knowledge previously reported. 

This is the first demonstration that we know of that perceived expression structure impacts sub-

problem computation.  Models of single-problem arithmetic (McCloskey, 1992, Dehaene & Cohen, 

1995; Campbell, 1994), as well as models of multi-term computation (Anderson, 2005; Koedinger & 

MacLaren, 1997), generally assume that single-problem computation is independent of abstract problem 
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structure.  In the situation demonstrated here, the actual computation process itself seems to be altered 

by the structure of the expression in which it is embedded. 

It might well be possible to accommodate spacing-structure alignment biases within a generic 

production-system account of mathematical reasoning.  After all, these regularities do exist to some 

degree in handwritten expressions (and in printed expressions for some multiplication signs), and it 

might be supposed that a system learning the order of operations would be sensitive to such statistical 

regularities. Therefore, a learning system could potentially incorporate this information, but could not, in 

general, profit from it, because the cues guiding structure are already unambiguous in the symbols 

themselves.  Thus, there is no good reason why systems with these regularities would be in any way 

superior to those that lack them.  Furthermore, such a generic system provides no reason to predict these 

results beforehand.   

An alternative account that comports more naturally with the results presented here, and provides a 

motivation for systems that align visual and formal properties, is that the production system learning the 

parsing of notations is not generic, but is itself partially implemented by a highly biased visual system.  

That is, we speculate that real rule learning is often (and here) accomplished largely by modally specific 

systems with idiosyncratic learning biases (Goldstone & Barsalou, 1998; Pothos et al, 2006; Endress et 

al, 2007).  In this case, the bias in arithmetic derives from a general visual bias to group together 

proximal elements into compound ‘objects.’  This, in turn, suggests that visual processes come to 

govern, in typical cases of computation, ordering operations. 

The observed tendency to add widely spaced and multiply narrowly spaced problems, only when those 

problems appear in compound expressions, suggesting that the calculated order of operations biases 

peoples’ perceptions of the operators themselves.  In particular, when physical spacing biases people to 

perform an addition operation before a multiplication operation, they end up being more likely to 

perceive the addition operation as a multiplication operation.  This bias is somewhat reminiscent of the 
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perceptual fluency heuristic (Jacoby & Dallas, 1981; Whittlesea & Leboe, 2003).  This heuristic is 

grounded in the robust effect that people have an easier time perceptually identifying objects that have 

been presented to them earlier or are somehow more familiar.  Perceptual fluency reverses the causal 

direction of this effect, and is thus a bias to judge that items as more familiar when they are easier to 

perceptually identify.  When items are presented in a physical manner that makes them harder to see, by 

rendering them in a blurry or noisy fashion, people judge that they have not been previously exposed to 

the item.  The current result is analogous.  In both cases, when perceptual processing of an item is 

manipulated, people are sensitive to the resulting psychological consequences on their performance, and 

end up incorrectly attributing the basis for their performance consequences.  These phenomena are 

predicted when people have simultaneous failures and successes in their metacognition.  On the positive 

side, the reasoner is using their observed order of executed operations to infer what the operators in fact 

were, and they are apparently doing this in an automatic fashion.  On the negative side, they are unaware 

that their own execution order has been influenced by a formally irrelevant factor – physical spacing.  It 

is reasonable that people do not make the correct inference to physical spacing because (like variations 

in stimulus blurriness for Jacoby & Dallas, 1981), these moment-to-moment variations are not a typical 

feature of their environment. 

Finally, Experiment 1 showed an impact on individual computation that is not obviously related to 

structure: errors on widely spaced problems were more likely than those on narrowly spaced problems to 

be larger than the correct response, both by biasing the numerical computation, and causing participants 

to systematically misperceive operators. This result serves as experimental confirmation of the role of 

physical size in literal computation.  The numeric size of a calculation is apparently conflated with or 

inherently connected to physical size such that when physical size is large, numerical result is 

overestimated as well.  This account is well-predicted by modern accounts of mental number 
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representation (e.g., Hubbard et al., 2005), and by metaphorical accounts of mathematical reasoning 

(Lakoff & Nuñez, 2000). 

 Because spatial consistency affects those aspects of expressions most directly involved in 

symbolic literacy, the interaction between space and formal reasoning has potential methodological 

implications for practices in the psychology of mathematical reasoning and learning.  Koedinger and 

Nathan (2004), for example, find that, contrary to the expectations of most educators and researchers, 

some story and word problems are easier for high-school students to solve than formally equivalent 

symbolically expressed computations. Although it does not affect their main conclusion that learning to 

read symbolic notation is a difficult and lengthy process, it is nonetheless telling that their symbolic 

expressions—which require participants to understand and apply order of operations rules—all seem to 

be uniformly spaced, making symbolic interpretation more difficult than it would be in at least some 

common notations. In general, studies of this sort do not report spacing conventions; the physical 

spacing must be inferred from the sample figures, which in this case use a uniformly spaced font.  The 

current research highlights the importance in educational studies in mathematics of reporting the exact 

physical properties of experimental stimuli. Furthermore, experiments using symbolic stimuli that do not 

match the spacing productions that students themselves employ when they produce mathematical 

expressions may not reflect real student understanding. 

Attending to the role of physical layout in formal reasoning could potentially lead to the development 

of formalisms that offer pedagogical improvements over neutral formats.  Reasoners use space when 

interpreting arithmetic and algebraic expressions.  One might take either of two pedagogical lessons 

from such a reliance: first, one might take the use of spacing as a weakness of extant formal symbol-

systems (and how they are taught), and attempt to design systems that do not provide such false lures; 

this is the approach taken by Kirshner & Awtry, 2004.  We are inclined toward the alternative approach 

of viewing spatial structure as a virtue, not a fault, of notational systems. If environmental spatial 
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properties are systematically constrained to bias reasoners toward correct answers, then spatial 

properties facilitate interpreting and evaluating expressions, benefiting the reasoning processes that often 

depend on these foundational skills by freeing resources potentially involved in both. However, whether 

this potential advantage is or can be realized in actual mathematical reasoning using standard notation is 

currently unclear.  Substantial research into how reasoners do or can incorporate mathematical spacing 

practices into reasoning will be needed to reach clear or definite implications for educational practice. 

Fundamentally these results challenge the conception of human reasoning as a fundamentally abstract 

formal process, with errors driven by misunderstandings of formal rules and properties. Instead, visual 

processes with idiosyncratic biases systematically impact even such an in-principle abstract task as 

arithmetic. The engagement of visual features and processes indicates that formal reasoning shares 

mechanisms with the diagrammatic and pictorial reasoning processes with which it is often contrasted. 

The very word “formal” contains an implicit pun: ‘form’ may either refer to the abstract structure of a 

thing, or to its outward shape or appearance.  We think that this pun is also implicit in the way reasoners 

achieve the use of formal systems like arithmetic; we frequently use the outward forms of notations—

and the ways that we engage them—as proxies for inherent computational essence. 
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Table 1: Rate of errors by type and spacing in Experiment 1. 

Error Operation Spacing  

Type Narrow Wide 

Operand Overestimates + .003±.002 .009±.002 

Operand Underestimates + .002±.001 .003±.001 

Operand Overestimates x .008±.002 .011±.003 

Operand Underestimates x .015±.004 .021±.005 

 .008±.002 .012±.003 

 .016±.009 .009±.005 
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 Table 2: the operation structure presented in Experiment 2. 
 

Operation type Example 

Plus-plus  

Plus-times  

Times-plus  

Times-Times  
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Table 3: Rate of operand errors in each position in Experiment 3 

Error Operation Spacing 

Type Narrow Medium Wide 

Overestimate .031±.005 .028±.004 .043±.006 

Underestimate .028±.004 .02±.003 0.021±.003 
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Table 4: Relationship between errors of various types and spatial consistency in Experiment 3 

 

 

 
 

 

Error Stimulus Type 

Measure Consistent Inconsistent 

Overall .139±.024 .239±.047 

Precedence .030±.016 .108±.037 

Operator .014±.004 .042±.006 

Operand .034±.003 .039±.003 



Proximity and Arithmetic 

 

38 

38 

Figure 1: Mean median correct-trial response time (left) and error rate (right), for the four problem types in each spacing 
condition.  Narrow-Wide means that the left operator is surrounded by narrow spacing, while the right operator is surrounded 
by wide spacing.  Error bars in all cases represent one within-condition standard error. 

 
Figure 2: Error proportion for Operand, Order, and Operator errors across several consistency levels.  Error bars reflect 

standard errors. 
 
Figure 3: Mean response time and error rate across operand size and consistency. 



Proximity and Arithmetic 

 

39 

39 

 
 



Proximity and Arithmetic 

 

40 

40 

 



Proximity and Arithmetic 

 

41 

41 

 
 

 
 

 


