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Formal algebras are among the most powerful and general mechanisms for expressing quantitative
relational statements; yet, even university engineering students, who are relatively proficient with
algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation
(Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these
formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the
use of notation without particular regard to the details of the physical structure of the equation itself
(Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal
descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment
of numbers and symbols in an equation) plays a role in the process of interpreting or constructing
symbolic equations. We propose in particular that construction processes involve an alignment of
notational structures across representation systems, biasing reasoners toward the selection of formal
notations that maintain the visuospatial structure of source representations. For example, in the statement
“There are 5 elephants for every 3 rhinoceroses,” the spatial proximity of 5 and elephants and 3 and
rhinoceroses will bias reasoners to write the incorrect expression 5E ! 3R, because that expression
maintains the spatial relationships encoded in the source representation. In 3 experiments, participants
constructed equations with given structure, based on story problems with a variety of phrasings. We
demonstrate how the notational alignment approach accounts naturally for a variety of previously
reported phenomena in equation construction and successfully predicts error patterns that are not
accounted for by prior explanations, such as the left to right transcription heuristic.

Keywords: mathematical cognition, symbolic reasoning, analogy

Mathematics is the study of abstract relations among abstract
entities. Even something as simple as addition involves abstrac-
tion; the same operation applies whether we are adding grains of
sand or galaxies. Among the wide variety of possible mathematical
representations, algebraic equations are one of the most powerful
and ubiquitous means of expressing quantitative relationships.
Formal algebraic statements in which variables are used to repre-
sent relationships among unknown or indeterminate quantities
express some of the most abstract assertions many people likely
ever consider.

Algebraic expressions may encode abstract relationships but are
themselves physical forms. Although notations (any written in-
scription that encodes meaning) often have fewer salient surface
features than many other symbol systems (Kaminski, Sloutsky, &
Heckler, 2008), formal notations such as algebra, diagrams, and
charts typically make extensive use of physical proximity and
spatial relations. Recent work has repeatedly demonstrated that
detailed physical properties and relations—and the perceptual sys-
tems that process them—play an important role in reasoning using
visual displays in a variety of abstract contexts including puzzles
(Patsenko & Altmann, 2010), biological taxa (Novick & Catley,
2007), weather diagrams (Hegarty, Canham, & Fabrikant, 2010),
and algebra (Kirshner, 1989).
In the case of symbolic algebra, a tension between formal

syntactic rules and visual patterns can arise. The formal syntax of
algebra encodes relations among quantities by abstract rules spec-
ified in terms of ordinal relations among symbol tokens. The same
mathematical expression can be rearranged in a number of ways
without altering the formal content of the equation. On the other
hand, a particular symbol system, such as mathematics, uses spa-
tial relations in unique ways to convey additional meaning (Sherin,
2001). In the usual algebraic syntax, this tension creates visual
structures that are sometimes aligned with (Landy & Goldstone,
2007b) and sometimes opposed to (Kirshner, 1989; Kirshner &
Awtry, 2004; Marquis, 1988) underlying mathematical content. A
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rich notational calculus such as modern algebra replaces some
conceptual relations with concrete organizational relations speci-
fied by principles of visualization and perceptual organization
(Dantzig, 1930; Goldstone, Landy, & Son, 2010; Malle, 1993). For
example, the relatively large space surrounding the equals sign in
an arithmetic equation allows spatial grouping to serve as a proxy
for the conceptual separation of an equation into left-hand and
right-hand sides (Landy & Goldstone, 2007a). Our purpose in this
paper is to explore the role of spatial relations such as proximity
and ordering in the construction of notational models (e.g., expres-
sions and equations).

Using the Structure of Notations to
Construct Equations

How do reasoners use algebraic notation to solve practical
problems? This paper focuses on one essential step: the creation of
a notational expression—in this case, an equation—that models a
situation. One possible account suggests that much of the time this
equation-construction process involves selecting an appropriate
template—say, a memorized equation pattern such as F ! ma, y !
mx " b, ax2 " bx " c ! 0, or base " change (Carlson-Radvansky
& Logan, 1997; Fisher, Borchert, & Bassok, 2011; Sherin,
2001)—and applying structure mapping (Gentner, 1983; Hummel
& Holyoak, 1997) to align that structure with other representations
of the scene, such as written descriptions, pictures, or mental
simulations (Bassok, Chase, & Martin, 1998). For example, asked
to find the total weight of a case with 6 apples, each apple
weighing 10 ounces, one might retrieve an a times b frame and fill
in the mapping a ! 6, b ! 10 via alignment to yield 6!10.
The selection and use of equations will interact with the selec-

tion and use of other kinds of diagrams and mental simulations. A
person reads a description and, on the basis of this reading and past
experience, constructs mental simulations that may potentially
model the situation. These may include images, conventionalized
structures such as number lines, or candidate expression fragments
adapted or selected from those previously encountered ( Fisher et
al., 2011; Sherin, 2001). These simulations are made specific by a
process of alignment: We suggest that structure mapping (Gentner,
1983) is used to identify entities in text or images with those in
equations. Once multiple representations have been constructed
and specified, it is possible to “check the answer” by verifying the
validity of the analogy after performing analogous transformations
across multiple representations (e.g., filling a specific number into
both an expression and a sentence and making sure both yield
identical results).
This alignment-based account generalizes the semantic align-

ments reported by Bassok and colleagues in arithmetic (e.g., Bas-
sok, Wu, & Olseth, 1995). Bassok et al. (1998) reported substantial
evidence for alignment between the semantic aspects of source
descriptions and particular arithmetic operations: For example,
people are much better at producing story problems that involve
the division of flowers across vases than story problems that
involve their sum. This is interpreted as occurring because the
asymmetric mathematical structure of division aligns well with the
asymmetric semantic relation active in typical vase–flower inter-
actions.
Semantic alignment posits that the construction of a formal

model involves an alignment across situational representations:

aligning semantic relations involved in the story and mathematical
relations between operations, based on attributes of those relations
such as whether the relation is symmetric or asymmetric. What
about the physical aspects of the notation itself? The physical
objects that compose an equation carry their own sets of properties
(sometimes called attributes or features) and relations. For in-
stance, they must be written in some color and with some size.
They may be written poorly or written well. The same holds for a
story description: In the sentence “There were four vases for each
white rose,” the fact that the entities are roses, rather than some
other type of flower, is likely a superficial aspect of the situation
(for the particular purpose of writing a relational equation); the fact
that the sentence contains only one multisyllable word is a prop-
erty of the notation. The notation also carries structural or rela-
tional information. Some of this information expresses ordinal
relations or even the spatial layout of the sentence. In the sentence
above, for instance, the word vase appears earlier in the sentence
than the word rose. Other notational aspects involve the hierarchi-
cal syntactic analysis of the sentence, as, for example, when the
word white modifies the word rose. Though one might think of
these as superficial aspects because they appear in the analysis of
the notation rather than the intended meaning, they are not super-
ficial in the same way that the specific color of the rose is. Some
of the properties and relations in the notation will be important; for
instance, when parsing the sentence itself (others of course may
not be). We will call aspects (relations and properties) of the
notation notational structure, to distinguish superficial semantic
from notational information. When a story is mapped into an
equation, there are two relevant sets of notational information: that
carried by the story text and that carried by the equation.
Structure mapping involves a search for high-quality mappings

between situations or representations (Gentner, 1983). One-to-one
mappings across representations are high quality when they align
objects along multiple collections of properties and relations in a
structurally consistent manner. We suggest that both aspects of
signified situations (semantics) and the physical aspects of nota-
tions themselves are used in the alignment process. Consequently,
the highest quality mappings will be achieved when these proper-
ties and relations all align to suggest one mapping. Previous
explanations have not considered the potential role of notational
properties and relations in the alignment process. This account
predicts that mappings will be preferred when they place symbolic
tokens into spatial relations analogous to the spatial relations of a
source image or the linguistic or spatial relations of a source text.
It should be easier for people to connect “John had two stamps and
got three more” to the arithmetic expression 2 " 3 than to the
expression 3 " 2. Both expressions express the same meaning, but
because the first case also maintains the left-right ordering, the
resulting mapping is of overall higher quality than that between the
text and the second case. Beyond including simple left-right or-
dering, we will include physical proximity, similarity, and other
grouping relations that have been shown to be important in the
interpretation of language (Bever, Jandreau, Burwell, Kaplan, &
Zaenan, 1990) and in mathematical syntax (Kirshner, 1989; Landy
& Goldstone, 2007b). Although in simple examples it may be easy
to invert the order, in more complex situations this analogical
mapping may become quite difficult. Consider for example a
sentence from our Experiment 2: There are five rhinos for every
six elephants.We suggest that this sentence is readily aligned with
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an expression such as R/5 ! E/6. The spatial organization of this
expression maintains the bindings between five and rhinos and six
and elephants. In the case of the correct expression in multiplica-
tive form R!6 ! E!5, the spatial organization of the equation is in
conflict with the sentence. In our account, it becomes challenging
for reasoners to find a consistent mapping from the sentence to the
equation because of the structural differences between the verbal
representation and the mathematical one. In general, semantic and
notational factors may reinforce or contradict each other; each is
predicted to impact problem difficulty.
Terms are considered grouped in stories to the degree that that

they are closely linked in the hierarchical syntactic analysis of the
sentence. Words are grouped in equations when they are bound by
high-order terms or appear together in the same visual space. For
instance, in the sentence The number of ducks times five is six times
the number of swans, of and ducks are tightly bound syntactically,
while ducks and times are less tightly bound but are still bound
more tightly than are five and six. Although five and six are
physically proximal, syntactically they lie in distinct arguments
(and on opposite sides) of the main verb of the sentence. Previous
work by Reed (1987) and Weaver and Kintsch (1992) indicated
that grammatical and narrative structures of word problems are
spontaneously aligned by students when comparing stories or
solving sets of stories. In this paper, only organizational and
syntactic notational relations will be considered, and we specifi-
cally focus on alignments across rather than within representation
schemes. Other notational aspects (e.g., color, font, size, or letter
similarity) may play an important role in notational alignment, but
this paper focuses on structural proximity.

The Left-Right Transcription Heuristic
Some instances of alignment effects have been found in prior

work on equation production. In the so-called students and pro-
fessors problems, participants produce an equation modeling a
sentence relating two entities such as “There are six students for
every professor” (the actual entities in the story may or may not be
students and professors; the Appendix presents materials used in
the current experiment). Because the correct multiplicative expres-
sion, 6P ! S, inverts the structural relations in the sentence
notation (i.e., the sentence puts six and students in the same phrase,
while the equation connects 6 and P), this pair has low equation
alignability, and, indeed, has been shown to be very difficult to
produce correctly (Clement, 1982; Clement, Lochhead, & Monk,
1981; Hegarty, Mayer, & Monk, 1995; Martin & Bassok, 2005;
Mestre & Lochhead, 1983). A response in which the relationship
between two variables in a simple proportional or additive rela-
tionship are swapped (in this case, 6S ! P) is called a reversal
error, or simply a reversal. Our account makes the general pre-
diction that expressions that align aspects of notation—such as
proximity, arrangement, and symbol similarity—across represen-
tation forms will be more often produced and more easily inter-
preted. Assuming that expression forms are selected on the basis of
general familiarity as well as apparent appropriateness, problems
will be solved more accurately when the notational structures of
readily accessible expression structures are aligned with correct
responses.
Although we present reversal errors as a type of alignment

effect, these errors have usually not been interpreted as instances

of deep structure mapping across notations. Instead, they have
often been attributed to the simpler left-right transcription heuris-
tic. In this heuristic, the expression is built up purely from key-
words such as “less than” or “times” embedded in a story text, with
the general constraint that the result be a syntactic expression
(Clement, 1982; Clement et al., 1981; Hegarty et al., 1995; Hins-
ley, Hayes, & Simon, 1977; Paige & Simon, 1966), without any
processing of the “meaning” of the story. For instance, consider a
problem statement like “John had some pennies. He gave away
three pennies, and after that he had as many as Mary.” In this case,
a person using a left-right transcription process would use only the
keywords “John . . . gave away . . . three . . . as many as . . . Mary.”
Converting each keyword yields J # 3 ! M, without any consid-
eration of the meaning of any of the words.
The left-right transcription heuristic is usually described as a

heuristic done in place of modeling when possible. When it is not
possible, modeling must be engaged. Because this style of expla-
nation invokes distinct processes separately responsible for rever-
sal errors (transcription) and correct responses (modeling), we will
call it the dual route account. In this account, the representations
of models and heuristics are quite distinct: While modeling does
not retain notational properties such as expression order, left-right
translation works only in terms of them.
The dual route account serves as a baseline model against which

to evaluate the argument for incorporating notation alignment into
modeling processes, reflecting a default rather than a specific
theoretical commitment of earlier work. Because our account
situates notational and semantic alignment as core processes of
notation construction, we predict it to have effects even when
modeling is engaged. On this account, reversals may sometimes
occur because of transcription but are often or usually the result of
alignment processes embedded within modeling itself. Thus, it is
worth examining cases where the process of transcription is
blocked.
One occurs when pieces of the equation are not physically

present in the explicit form of the text. For instance, a sentence like
“write a quadratic equation with coefficients of 6, 2, and 9” does
not fully reflect the appropriate equation, 6x2 ! 2x ! 9 " 0.
Instead, that equation can only be reached through a process of
semantic interpretation, retrieval from memory, and, indeed, some
guesswork. Thus, the process of transcribing as usually defined is
impossible in this case; one simply cannot solve the problem
without engaging the meaning of the text. However, the concrete
inscriptions align nicely, in that the coefficients are bound in a
common phrase in the sentence and appear in the same order
bound together on one side of the resulting equation (which is in
a default format). The selection of a common template will favor
regularly used forms, while the alignment process will tend to put
coefficients in the same order and structure as in the phrase.
Experiment 1 tests a case similar to this but using Newton’s
gravitational equation.
A second case in which strict transcription is blocked is when

the equation involves vertical structure, such as division. Recently,
Fisher et al. (2011) demonstrated that the reversal rate of typical
students-and-professors-style problems sharply decreases when
students are forced to use an equation structure that creates a
high-quality alignment between text and equation. In their exper-
iments, students were encouraged to construct division models
such as
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for sentences such as “There are six students for every professor.”
Fisher et al. interpreted this result assuming that the nonstandard
vertical structure blocked simple transcription heuristics, forcing
students to engage in (more successful) modeling.
It is worth noting that the reason for the decrease in transcription

errors, though central here, is peripheral to the primary purpose of
Fisher et al. (2011). Their major contribution lies in revealing how
students in algebra rely on multiplication rather than division as a
standard form for equations, even when they would be better off
using division. We entirely agree with this important conclusion
and replicate it in Experiments 2–3, below. We have a somewhat
different interpretation of the correct behavior in division cases.
While Fisher et al. assumed that transcription heuristics are used in
multiplication, but not in division, our notation alignment account
suggests that in both cases modeling will occur, and an important
component of that modeling will be the alignment of notational
structures between the story and the equation. Modeling will be
more successful, in our account, when the preferred or selected
concrete forms align with notational (i.e., textual) properties of
stories. In line with this, note that while the correct multiplicative
statement 6P ! S does not align notational relationships among the
tokens of the sentence and the expression in the example above,
the division equation does align them. In line with our account,
students encouraged to use the division expression made many
fewer reversal errors than those encouraged to use multiplication
and gave substantial evidence of modeling.
As another example, consider a problem like “There are five

elephants for every three rhinoceroses. Write an equation relating
the number of elephants to the number of rhinoceroses.” The story
notation puts five grammatically close to elephants and three
grammatically close to rhinoceroses, which together with a default
bias toward multiplication predicts an equation like 5E ! 3R (i.e.,
a semantic reversal). If the problem is solved via a division
equation, the dual route and notation alignment accounts make
similar predictions. The process of direct transcription is impossi-
ble here, so modeling should be necessary. If transcribing is
primarily responsible for errors, then errors will be reduced. If the
alignment of notation is responsible for reversals, errors will also
be reduced here but for a different reason: The division equations
that put 5 and E into alignment and 3 and R in alignment include
E
5 " R

3 and
5
E "

3
R, which align “left side” with the first phrase of the

story and “right side” with the second, or even E
R "

5
3, which aligns

“numerator” (or “top”) with the first side and “denominator” with
the second. Of importance, all these equations are correct; so
aligning notation tends to produce correct responses.
In other cases, these two accounts make different predictions.

Consider “There are nails on one side of a balanced scale, and
screws on the other. There are 9 nails for every 4 screws. Using N
for the weight of one nail and S as the weight of one screw, write
an equation that expresses the relationship among the weights of
the nails and the screws.” On a balanced scale, weights are pro-
portional inversely to counts, because the total weight on each side
is the product of the number of items and the weight of a single
item. Therefore, one can apply the proportionality schema to solve
the problem (Inhelder & Piaget, 1958). In this example, the screws
must be heavier than nails, because it takes fewer of them to

balance the larger number of nails. At this point, the problem is
one of proportionality, just as when variables are counts. Thus, a
correct equation would be 9N ! 4S. Thus, transcription produces
correct answers, as would the notation alignment process, when
the equation is multiplicative. If the equation produced involves
division, on the dual route account transcription processes are
blocked, so again accuracy should be high. However, the notation
alignment account predicts a different set of outcomes. Errors
should indeed be rare in the multiplicative case, but they should be
frequent in the case of a division equation. This is because the
aligned division equations, such as 9

N "
4
S, reverse the correct

relation. This case is directly probed in Experiments 2 and 3.
We do not suggest that that left-right transcription heuristics

never occur, but our notational alignment account does not attri-
bute the bulk of reversals to shallow errors. Instead, reversals such
as those discussed above will be common whenever the syntax of
English language statements and spatial structure of appropriate
mathematical expressions are misaligned—whether or not a strict
left-right transcription process is likely or possible. Reversals
occur because the process of modeling itself involves alignments
across notational schemes, and surface-level matches facilitate
these alignments. The alignment process we suggest also predicts
left-right biases in the cases where it is usually found, but we see
such alignment as part of normative equation construction, not just
as the result of a separate and shallow heuristic. We predict that
ordering will affect outcomes even in cases where strict transcrip-
tion processes are impossible to apply and modeling is necessary
for equation construction.
To sum up: Traditional explanations based on transcription

heuristics parcel the effects of notation and of meaning into two
dual routes, with little or no overlap. The notational alignment
account we suggest here integrates them: Semantic and notational
alignment is an essential step in model-based reasoning. Because
of this, the notational alignment account predicts that even when
equations must be retrieved from memory through a meaning-
driven process, or otherwise cannot be strictly transcribed from the
words of the problem, word and equation will tend to align into a
common structure.
In three experiments, we evaluate the role of the notational

alignment account in several novel equation production contexts.
Experiment 1 conceptually adapts Chatterjee, Southwood, and
Basilico’s (1999) demonstration of the tendency to align across
language and pictures to equation production, exploring whether
responses are aligned even when the form of the problem lacks
elements of the equation, which must be retrieved through mod-
eling. Experiments 2–3 systematically manipulate the alignment of
structural notational relations across text and equations in students-
and-professors-type problems, exploring cases for which the no-
tational alignment account makes clear predictions about relative
difficulty. In most of these cases, strict left-right transcription as
defined above is impossible.

Experiment 1
Experiment 1 explores the existence of a spatial–linguistic

alignment bias in the construction of equations from text, in a case
in which the equation must be constructed from memory (i.e., the
full equation cannot be extracted from the text). Our procedure is
adapted from experiments by Chatterjee et al. (1999) and Maass
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and Russo (2003) demonstrating that the concrete characteristics
of a source sentence influence, to some degree, the preferred
arrangement of elements of a picture. For instance, when drawing
pictures of sentences such as “the girl pulled the boy,” speakers of
left-right-oriented languages tended to draw the girl to the left of
the boy.
We asked participants model a story by constructing a Newto-

nian gravitational equation:

F"G
m1m2
r2

.

The key question was whether participants placed the mass terms
in the equation in the same order in which they were introduced in
a problem statement. This provides a good analogy to experiments
demonstrating concrete notation alignment in the language–picture
context, because either order is correct. More important, the grav-
itational equation contains several terms (the constant G and the
square of the distance between the objects) and operations that are
not specified by the lexical items in the text. Because only the mass
terms appear in the story (see the Appendix for the specific
materials used), strict application of the left-right transcription
heuristic in the absence of modeling would lead to an incoherent
formal expression, such as m1m2. Transcription is not predicted
when it yields incoherent results, so the baseline dual route model
predicts modeling (or, potentially, other heuristics) in this case.

Method
Participants. Participants were 32 undergraduates at the Uni-

versity of Illinois who had recently completed introductory physics
and who participated in exchange for monetary compensation.
Introductory physics students were chosen because the materials
assumed familiarity with gravitation equations. Participants were
recruited through fliers placed around the physics building and
near classrooms. Participants completed several problems related
to other experiments. The number of participants was selected to
be appropriate for those other experiments.
Procedure. Participants completed a short test containing sev-

eral elementary mechanics problems and other distractors. Some
problems were parts of other experiments, which will not be
discussed here. The target problem was the fifth problem in a set
of 16. In this problem, participants were told a story about several
asteroids (with masses m1, m2, and m3) and a single asteroid (mass
m). The order in which the terms were introduced was manipu-
lated: In one condition (the single asteroid first condition), the
single asteroid was described first (it moved from asteroid to
asteroid). In the other condition (several asteroids first), the sev-
eral asteroids were introduced first and were described as moving
past the single asteroid.
The other items in the study involved physics problem solving,

in fairly typical situations that a student might see in a classroom.
Some had previously been used as exam or test questions in other
classes. The content of these problems was unrelated to that of the
target problem; no problems other than Problem 5 involved celes-
tial bodies or gravitation.
The participants were asked to construct the Newtonian gravi-

tation equation for the pairings of the single asteroid with each of
the several asteroids. Participants were not reminded of the equa-

tion form; they had to reconstruct it or retrieve it from memory on
the basis of semantic modeling. Assuming an appropriate frame
was reconstructed, the participant must decide which mass term to
place on the left and which to place on the right in the numerator
of the gravitation equation. Because simply transcribing in this
case would lead to gibberish, the dual-route model does not make
any strong prediction about ordering of the terms. If the alignment
of notational structure is a core component of equation construc-
tion processes, though, participants should tend to place terms in
the order in which they were introduced in the problem.

Results
Responses were analyzed except when the item was left blank,

only one mass term was included, or it was impossible to identify
the mass terms. Of the participants, 27 either responded correctly
or made only minor errors (typically neglecting to square the
distance in the denominator). Four participants in the single aster-
oid first condition and one participant in the several asteroids first
condition either failed to respond or wrote extremely incorrect
answers, which did not involve two mass terms. All participants
whose responses could be analyzed placed the mass terms consis-
tently across the three gravitation equations. Eighty-nine percent
(12 in each condition) placed the terms in the equation in the order
in which they were introduced in the narrative (p $ .001 by
Fisher’s exact test).

Discussion
Our purpose in this experiment was to examine whether reason-

ers match order structures across equations and source narratives,
particularly in cases in which modeling is necessary in order to
generate an equation but the order does not matter (as is the case
with the masses of the two asteroids in the gravitational equation).
We found a powerful tendency toward ordinal alignment similar to
that previously found in a picture-drawing task. Modeling is
needed to get to the right equation, so notation-alignment pressures
and modeling must coexist in solutions to the same problem.
A general pressure toward matching notation order in clear

modeling contexts is a necessary precondition for the notation
alignment account. The existence of such a pressure contradicts the
baseline dual route account described above, because in that ac-
count left-right transcription is a separate process from modeling,
and left-right transcription is impossible here. This result does not
on its own indicate that alignment is an important factor in the
production of equations. The flavor of the dual-route account is
that modeling generally produces correct expressions, while rever-
sal errors are usually caused by flawed heuristics not based on
modeling. It might be that there is some weak pressure in favor of
alignment that operates only when other factors are absent, but
nevertheless be the case that most errors are caused by separate
heuristics such as left-right alignment.
Gravity involves an interaction between two objects. Each as-

teroid exerts the same gravitational force on the other, if the
situation is appropriately modeled. The instructions asked partic-
ipants to write an equation that expressed the mutual gravitational
force between them, but in each case, one asteroid set was de-
scribed first, moving past the other. It is therefore possible that
some participants inappropriately inferred a causal asymmetry
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from the order or the movement, and that some of the alignment
seen here results indirectly from the known bias to put causes to
the left of effects (Mochon & Sloman, 2004). Alternatively, it is
quite plausible that these biases are themselves a result of nota-
tional alignment, together with the well-established tendency to
consider actions in visual scenes as proceeding rightward, with
causes on the left (Chatterjee et al., 1999; Kranjec, Lehet, Brom-
berger, & Chatterjee, 2010).
Experiments 2 and 3 explore predictions of notation alignment

in traditional students-and-professors contexts. In any account of
equation production, these problems lead to many reversals be-
cause of an unfortunate mismatch between the structure of com-
mon comparative expressions in algebra and the structure of com-
mon comparisons in English. There is no deep reason why algebra
and English should be structured in this way, but they are. In a dual
route account, this mismatch leads to errors because of inappro-
priate application of heuristics; thus, errors should be reduced by
any intervention that reduces the rate of inappropriate heuristic
use, such as using language phrasings or equation structures that
do not admit easy transcription. On the notation alignment ac-
count, structure mapping is a core component of equation model-
ing; errors should be reduced when the text and the correct equa-
tion align and should be higher when they mismatch across
contexts. Table 1 presents several examples of alternative ways to
phrase comparative statements in English, and multiplication and
division equations. Each sentence is accompanied by two models
based on inverse operations in which variables stand in for the
magnitude of the object sets referred to. In each case, one opera-
tion aligns concrete notational structures, while the other misaligns
them. For instance, the relational statement “There are five rhinos
for every six elephants” is correctly modeled by both the multi-
plicative statement 6R ! 5E and the division statement R/5 ! E/6.
Neither maintains the left-right order of the sentence, but the
division model maintains the proximity relationships of the text
notation; thus, notational structure of the division model and the
sentence are better aligned.
Experiment 2 provides a preliminary replication of Experiment

1 of Fisher et al. (2011), in which participants were required to
produce multiplication or division equations. Experiment 2 ex-
tends prior work in two ways: First, Experiment 2 used a new
manipulation to create a predicted interaction within division prob-
lems: Sometimes the variables represented the number of objects
(as in traditional students and professors problems), but sometimes

the variables represented the weight of a single item, and reasoners
wrote an equation using variables to stand in for the weight of each
object. Because mathematically in this situation numbers and
weights relate inversely, this has the effect of inverting the con-
crete relations of the correct equation for a particular text, com-
pared to the more typical form requested in relational equations.
For example, if there were five rhinos for every six elephants on a
balanced scale, 5R ! 6E is a correct model of the weights involved
(because five times the weight of a single rhino really would be the
same as six times the weight of a single elephant). Number
problems asked participants to solve the more typically explored
equation in which variables stand for set sizes. Dual route accounts
can naturally predict that modeling weights would be, say, more or
less difficult than modeling item counts, which would lead to a
main effect in variable type when modeling is engaged (e.g., in
division problems). However, only the notation alignment account
predicts a three-way interaction among variable, phrasing, and
frame, and in particular a two-way interaction within just the
division problems, such that particular phrasings make a problem
difficult exactly when they misalign the surface structure and the
correct response.

Experiment 2

Method
Participants. Because our goals in Experiment 2 did not rely

on physics expertise, a more general population was used in
Experiment 2 than in Experiment 1 (in this case, undergraduates
taking introductory psychology). Sixteen undergraduates attending
the University of Richmond received partial course credit for
participation. On the basis of pilot testing, we believed that this
population size would be sufficient to evaluate the predictions of
the notation alignment account.
Design. We constructed several relational equation problems.

Each described in a short paragraph (2–4 sentences) an equilib-
rium condition of two similar objects (e.g., screws and nails) on a
balanced scale. The critical sentence numerically described this
relationship using two relatively prime constants. For instance, the
critical sentence of one problem asserted, “Measuring these ingre-
dients on a balance, [Janet] notices that for every seven chocolate
chips on one side of the balanced scale, there are five nuts on the
other side.”

Table 1
Sample Phrasings, With Multiplication and Division Models With Number Variables

Phrasing type Examples Multiplication model Division model

Direct comparison There are four screws for every nail. 4N ! S S
4

" N

Direct comparison There are five rhinos for every six elephants. 5E ! 6R E
6

"
R
5

Hypothetical comparison If there were four nails for every nail there actually is, there
would be as many screws as nails.

4N ! S S
4

" N

Operation statement Multiplying the number of nails by four yields the number
of screws.

4N ! S S
4

" N

Operation statement Six times the number of rhinos is the number of elephants
times five.

5E ! 6R E
6

"
R
5
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The test problems varied along three factors: phrasing, equation
frame format, and variable type. Note that the problems were
phrased as relationships among entities on a balanced scale, re-
gardless of the variable type. This was done in order to keep story
frames matched across problem types (see the Appendix for sam-
ple materials). Table 2 provides examples from each condition and
indicates for each condition whether the notational structure of the
frame and the story are aligned. The phrasing factor manipulated
the proximity relations of terms in the story problem through two
levels: direct comparison and operation. In direct comparison
items, the critical sentence was of the form “For every A X’s, there
are B Y’s,” where A and B were mutually prime number words
under 10 and X and Y were two related objects (e.g., pies and
cakes). In operation items, the critical sentence was of the form
“The number of X’s times B is A times the number of Y’s.” The
direct comparison condition makes the pairs A–X and B–Y gram-
matically proximal (i.e., puts them in the same phrase), while the
operation condition makes proximal A–Y and B–X. Furthermore,
the ordering of constants and variables is different in the two
phrasing conditions, so applying strict translation to operation
statements would result in an expression like XB ! AY. This
property was meant to allow us to distinguish responses generated
by a strict left-right transcription strategy; however, even left-right
transcription heuristics assume that people accommodate to some
degree mathematical norms. As this is not a cleanly distinguishing
factor, we will not discuss it further.
The equation frame factor manipulated the proximity relations

of the correct responses by requiring the participant to generate
either a multiplication equation or a division equation. Participants
were given one of two frames on each problem (see Figure 1) and
were instructed to write their answers directly into the equation
frame.
The variable type was modified as described above: Each prob-

lem either asked participants to write an equation expressing the
relationship between the weight of the objects on the scale or asked
them to relate the objects’ numerosity. Because these properties
are inversely related, the correct equation model is reversed for
each (to see this, consider that the heavier the object on one side
of the scale, the fewer such objects are needed to balance whatever

is on the other side of the scale). For the sentence about Janet’s
cookies above, the equation 7N ! 5C would be correct if the
variables represent counts but would be reversed if they represent
weights of individual items.
Predictions. The basic prediction of the notation alignment

account is quite simple: Accuracy will be highest when the text
places closely together terms that should be placed closely together
in the correct equation: This amounts to a full three-way interac-
tion. The dual route account also makes clear predictions. On
problems with a multiplication equation frame, participants are
likely to engage in left-right transcribing, so accuracy should
depend on whether that transcription is correct (transcription yields
correct number equations in the operation condition and weight
equations in the direct comparison condition). On division frame
problems, participants will be unable to engage in left-right tran-
scribing and so will be forced to model. The difficulty of the
problem will depend on the difficulty users have in extracting from
the text the relevant information. Crucially, on this account com-
parison phrasing and the variable type act roughly independently,
so that these factors should not interact.
Procedure. Written tests were composed containing 16 target

items. Target items were separated by a multidigit arithmetic
problem that served as a distractor. Equation frames were placed
directly below each item. Two target items and two distractors
appeared on each page. The order of the conditions was counter-
balanced with a Latin square design. The order of the narrative
contents was held constant across counterbalancing; story narra-
tives were rearranged to match the particular conditions.
Analysis. In Experiments 2–3 we analyze primarily rates of

accuracy and rates of reversal. Because outcomes are bounded
averages of binomially distributed variables and also because we
anticipated many outcomes to be close to the edges of the range,
traditional analyses of variance (ANOVAs) are not appropriate
analytical tools. Also, because people occasionally left entries
blank and often used scratchwork (see below), Experiment 2 has
some missing data. Logistic regressions recode proportions as
log-odds and do not assume perfect balance across repeated mea-
sures and are therefore conceptually more appropriate tools in this
case (Hosmer & Lemeshow, 2000). Throughout the rest of this
paper, accuracy and reversal rates are analyzed using mixed-
effects logistic regressions with random subject intercepts, which
should be robust to all but extreme floor effects. We included all
main effects and interactions. These regressions were carried out
using the lmer function of the lme4 package in R (Bates &
Maechler, 2010). In each case, statistical significance for individ-
ual main effects and interactions was determined by a nonpara-
metric permutation bootstrap with 10,000 replications. (Reported p
values are in general the proportion of replications with a more
extreme measure statistic than the empirical one, in the predicted
direction. That is, all p values reflect one-way tests.) In every case,
identical significance patterns are obtained with more traditional
ANOVA analyses.

Table 2
Manipulations Used in Experiments 2–3

Phrasing Unit Frame
Frame–language
alignment?

Direct comparison Number Multiplication No
Direct comparison Number Division Yes
Operation or hypothetical
comparison Number Multiplication Yes

Operation or hypothetical
comparison Number Division No

Direct comparison Weight Multiplication Yes
Direct comparison Weight Division No
Operation or hypothetical
comparison Weight Multiplication No

Operation or hypothetical
comparison Weight Division Yes

Note. The rightmost column specifies whether the language matched the
frame used. Reversal rates are predicted to be higher when frame and
language are not aligned.

Figure 1. Sample equation frames.
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In Experiment 2, all results were analyzed using mixed-effects
logistic regression models, including main effects of phrasing,
frame, and variable type, as well as interactions. We projected,
based on pilot work, that many students would produce scratch-
work for problems, especially division problems, outside of the
problem frame, and so they did: 45% of problems contained some
scratchwork. The analyses presented here exclude items in which
scratchwork mismatched the given frame. Scratchwork will be
taken up again in Experiments 3a and 3b; in the current experi-
ment, note that analyses including these trials yield identical pat-
terns of significance but with generally smaller effects. This is
especially true for division-framed problems, in which most
scratchwork involved constructing a multiplicative representation.
This dominance of scratchwork in division framed problems rep-
licates the bias toward multiplicative equations for algebra users
noted by Fisher et al., 2011.

Results
Reversal rates are shown in Figure 2. The primary result of

interest is the three-way interaction: The interaction was signifi-
cant in the predicted direction (% ! #21, p & .001). Because the
notation alignment view uniquely predicts an interaction between
variable and phrasing for division problems, we separately ex-
plored this two-way interaction as well. Within division problems,
the interaction was significant, such that problems that aligned
phrasing and equation were reversed less often than problems that
did not (% ! #2.6, p ! .011). Both main effects were also
significant: Weight problems led to more reversals than number
problems (% ! 2.2, p ! .002), and operation phrasing led to
marginally more errors than direct comparison (% ! 1.3, p !

.028), suggesting that some problem structures and phrasings were
indeed easier to formalize than others.
Within the multiplication problems, once again the predicted

interaction held (% ! #26, p $ .0001), as did both main effects:
Weight problems were again reversed more frequently (% ! 4.1,
p $ .0001), as were operation-phrased problems (% ! #20, p $
.0001). The interaction was even more powerful than for division:
Nearly every multiplication frame problem was inverted when the
problem was a direct comparison and the variables were numbers
and when the variables were weights and the phrasing was oper-
ation. These are just the cases for which concrete notational
structures misalign with correct multiplication models.

Discussion
This pattern of results closely matched the predictions of the

notation alignment view. Reversal rates on problems in which
relation binding in English mismatched that of mathematics were
very high (averaging 76%); when the notational structures of the
two situations aligned, the reversal rate was just 13% on average.
The interaction was large and statistically significant in division
problems as well as multiplication problems, though the pattern
was weaker in division problems overall. The simplest account for
this difference is again the multiplication bias observed by Fisher
et al. (2011): Many participants may initially have conceived of a
multiplication expression and converted it mentally in order to fit
it into the required frame.
Experiment 2 provided a strong test of the notation alignment

account. However, these problems were clearly quite challenging
for our participants. The within-subjects design meant that partic-
ipants were faced with one difficult problem after another, which

Figure 2. Mean reversal error rate in Experiment 2, across story problem, equation format, and variable type.
Error bars represent standard error.
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may have affected the strategy they used (cf. Christianson, Mestre,
& Luke, 2012). Additionally, the phrasing of the operation state-
ment translates very directly into an algebraic equation and is quite
unnatural as an English sentence. These properties may have
inclined students away from meaningful semantic modeling.
Experiment 3A explored the same issues as Experiment 2, but

two factors were changed. First, a between-participants design was
used, in which each participant solved just a single problem. This
ruled out the possibility that participants might alter their strategy
in the context of a particular (and repetitive) problem set. In
addition, Experiment 3A replaced the “operation” phrasing by the
less transparently mathematical hypothetical comparison (see Ta-
ble 1). These two changes largely served to explore the generality
of the results already described. In addition, they allow us to
evaluate the influence of scratchwork on reversals in more detail.

Experiment 3A

Method
Participants. In this experiment, the large number of partic-

ipants and the short nature of the task made it difficult to collect
data at the home institution of the first and third authors. Partici-
pants were recruited from Amazon’s Mechanical Turk, an online
system for recruiting a scalable workforce to accomplish routine
tasks. Although not originally intended as an experiment recruit-
ment site, Mechanical Turk is increasingly used for psychological
experimentation. Participants are required by Amazon to be over
18. Participation was further restricted to workers reporting living
in the United States; no other restrictions on participation were
made. Demographic data suggests that the median U.S. worker on
Mechanical Turk (Turker) is in the mid-30s, is White, has a
bachelor’s degree, and is female but that there is substantial
diversity in terms of age, education level, and socioeconomic
status (Ross, Zaldivar, Irani, & Tomlinson, 2010). Turkers have
been found to match college undergraduate populations fairly well
on a variety of cognitive tasks (Crump, McDonnell, & Gureckis,
2013; Mason & Suri, 2012).
Participants (N ! 512) were recruited for this task and were

given small monetary compensation. In our sample, the median
age was 33 years; of participants, 54% reported being female and
17% self-reported working in a math-related field or having a
math-related major in college. Participants who gave answers that
were blank or that did not contain relational equations (most of
these were numerical equations) were eliminated from consider-
ation, leaving 410 participants in the final analysis.
Design and procedure. Each participant saw a single problem

about a person, Olivia, who had gone shopping and purchased hats
and bags. Olivia had spent an equal amount of money on each but
had purchased four times as many of one as of the other. Three
factors were varied. First, problems could be phrased as direct
comparisons or hypothetical comparisons. Direct comparisons re-
late unequal quantities, as in “Olivia bought four bags for every
hat.” Hypothetical comparisons describe what counterfactuals
would make the two sets equal (e.g., “If Olivia had bought four
hats for every hat she actually bought, she would have bought as
many bags as hats”). Note that in this frame Olivia in fact bought
a certain number of hats, but if every hat had instead been four
hats, the number of hats would have equaled the number of bags.

Second, a problem frame was provided to the participants. As in
Experiment 2, this could be either a multiplication or a division
equation. Finally, the variable was manipulated such that the
requested equation related the number of hats and bags purchased
in one level, and the cost of a single hat and bag in the other.
Participants were given as much time as they desired to construct
their solution. The relative costs and numbers of bags and hats
were counterbalanced across participants (the ratio was always
4:1). Because hypothetical comparisons become burdensome with
two hypotheticals, we used comparisons with just a single number.
Pilot work with this population indicated that with this population
reversals would be frequent.
Because participants were recruited online, it was not possible to

tell whether they used scratch paper. Our hypothesis, again, is that
the default character of multiplication would incline participants to
produce a multiplication equation, which could be algebraically
converted into a division. Because predictions are reversed for
these participants relative to those who directly construct a divi-
sion frame, it was important to attempt to distinguish them. Two
questions were asked to probe this issue. First, participants were
directly asked whether they had imagined or written down an
equation other than and prior to the one they filled into the frame.
Second, participants were asked to briefly describe how they went
about solving the problems. The verbal descriptions were sepa-
rated from condition and other behaviors and were examined by
two University of Richmond students ignorant of the hypotheses of
the study. Responses were coded based on whether the participant
clearly described the (physical or mental) construction of an equa-
tion prior to the one in the frame. For example, “It was 4 hats to
every bag so 4H ! B, but the problem wanted a division solution,
so I divided by sides by 4 and came up with the ratio,” “Four
hats! Bags!' 4H ! B !' H ! B/4,” and “I just thought 4B !
H” were all coded as initial multiplication equations; verbal de-
scriptions could be coded as multiplication, division, or unclear.
The two raters rated all descriptions. Their level of agreement was
moderate: Coders agreed on 76% of ratings (Cohen’s ( ! 0.56),
indicating only a moderate level of agreement between raters. The
first rater was not available for consultation, so discrepancies were
resolved through discussion between the second rater and the first
author using just the verbal descriptions. Finally, the response was
coded as scratchwork if a participant reported picturing or writing
a different equation, or if the participant’s description was coded as
using an initial equation that mismatched the provided frame.
Predictions. In the notation alignment view, problems will be

easy when the text aligns well with the correct response for the
variables given and the frame initially used. For instance, with the
multiplication frame and the cost variable (the traditional students-
and-professors case of Clement et al., 1981), hypothetical compar-
isons should be formalized more readily than direct comparisons,
because their concrete and semantic properties align well with the
same correct response. For division frames or cost variables, the
direct comparisons should lead to fewer reversals than hypotheti-
cal comparisons, but when the frame is division and the variable is
cost, the hypothetical comparisons should again be easier. Finally,
all of these patterns should hold only when an initial mismatching
frame is not used; the relations should be reversed when the
participant initially constructs a mental model different from the
provided form. Thus, the notation alignment view predicts a four-
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way interaction among frame, phrasing, variable, and the use of
scratchwork.1
The dual systems account does not make a strong prediction

about accuracy in most of these cases. In direct comparison state-
ments, some reasoners will be lured into making left-right tran-
scriptions with multiplication frames (or imagined multiplicative
equations), while others will engage in modeling. In the hypothet-
ical comparisons, a process of strict left-right transcription is
blocked by the phrasing (which has too many instances of some
variables as well as some ordering problems), but students who
engage in modeling will arguably have a harder time doing so,
because the relations involved are less transparent in this phrasing.
Thus, which phrasing is associated with higher error rates will
depend on whether more students are lured into transcription in the
direct comparison or more students make modeling errors in the
hypothetical. In the division case, accuracy should be no lower
(and presumably higher) in the more easily modeled direct com-
parison case and should not depend on variable type except per-
haps as a main effect (if it is for some reason easier to model costs
or numbers).

Results
Reversals were analyzed using nested mixed-effects logistic

regression models, including main effects of phrasing, frame,
variable type, and scratchwork, as well as all interactions to
estimate reversal rates. Reversal rates are shown in Figure 3. The
four-way interaction was marginally significant (% ! #2.8, p !
.07; notice that, like all comparisons reported in this paper, this
was effectively a one-way comparison) and in the predicted direc-
tion. When participants reported directly writing the solution into
the frame without an intervening visualization of an equation,
reversals were as predicted by the notation alignment account.
When visualization was reported, the interaction was inverted for
division-framed problems; multiplication problems were less af-
fected by reported scratchwork. According to planned comparisons
within each problem type, the three-way interaction was signifi-
cant for divisions (% ! #3.03, p ! .01) but not for multiplications
(% ! #0.16, p ! .95). Within divisions, there was a trend in the
same direction as Experiment 2 (% ! #1.40, p! .09) for trials that
were reported as solved directly, while it was reversed for those
scratchwork (% ! 1.1, p ! .02). Within multiplications, the pattern
of Experiment 2 held both when problems were solved directly
(% ! 3.03, p $ .001) and when they were not (% ! 3.32, p !
.002).

Discussion
In each case, the predictions of the notation alignment account

are borne out. Systematically, across a wide range of problem
types and phrasings, the organization of the problem description
shapes the structure of typical errors in equation production. These
patterns are parsimoniously described by the idea that equations
are constructed and identified via relational alignment processes
that include the structure of notational representations.
The marginally significant four-way interaction depended on

two assumptions: (a) Alignment of concrete notational structures
matters across frames, phrasing structures, and problems. (b) Mul-
tiplication is a default format, so that scratchwork was more likely

to convert a division problem into a multiplication than vice versa.
Our detection of the four-way interaction was limited by our
ability to resolve visualizations. Even written scratchwork is prob-
ably only a mediocre proxy for initial visualizations; it is likely
that our methodology treated a few people who were solving the
problem directly as having written scratchwork and missed many
people who imagined an equation but failed to report having done
so. This possibility is made especially likely by the fact that
interrater agreement was only moderate. Furthermore, the primary
four-way interaction was only marginally significant. On the other
hand, every specific three-way and two-way comparison matched
the predicted direction (and replicated Experiment 2), giving us
some confidence in the predicted interaction.
The interaction of primary interest in Experiment 3A was only

marginally significant, so we decided to investigate the patterns
further with a follow-up experiment. In Experiment 3A, by hy-
pothesis, the presented frame does not really matter to the out-
comes; what principally drives performance is the analogical
alignment between the problem and the first equation frame the
participant creates or imagines. Most participants are highly skilled
at the simple algebraic transformations needed to convert between
division and multiplication formats. The division frame encour-
ages use of division but otherwise does not particularly affect the
outcome of the result. In Experiment 3B, we simplified the in-
tended interaction by consistently presenting a single frame type
and explicitly asking participants to report whether their initial
frame was a multiplication or division (or something else), elim-
inating the need for coding brief verbal descriptions. On the basis
of Experiment 3A, we predict a three-way interaction among
variable type, participant-chosen frame, and phrasing, such that
problems will be reversed less often when the notationally aligned
response produces the correct answer.

Experiment 3B

Method
Participants. Participants (N ! 320) were recruited from

Amazon’s Mechanical Turk. We selected this number based on the
estimated power of the predicted interaction, using the data from
Experiment 3A and pilot studies.
Design and procedure. The design was similar to Experiment

3A, with two differences. First, the multiplication frame problems
were dropped in order to focus on division problems. All partici-
pants filled in the division frame as their response. Second, the
strategy probe was more direct: Participants were asked to report
whether the first equation they wrote, imagined, or entered was a
multiplication or a division equation. Examples of each were
provided. Participants were allowed an other option, in which case
they were asked to explain their response. 82 (25%) of the re-
sponses were other. Inspection of the strategy explanations in the
other reports indicated that nearly all reported strategies compat-
ible with filling in a frame of one type or another. Including these
reports did not affect the results reported here, but for these
analyses those results are excluded.

1 We thank Tom Carr for suggesting this analysis.
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Results and Discussion
Reversal rates are shown in Figure 4. Notice that the bins in this

graph are not equal, because strategies followed participants’ re-
ports: In the analyzed set, 158 participants reported using division
frames, and 80 participants reported using multiplication frames.
The primary interaction of interest is the three-way interaction
among problem phrasing, reported initial frame, and variable type.
This interaction was significant (% ! #4.5, p $ .0001), in the
predicted direction. Within the group reporting using division, we
found the predicted interaction favoring aligning variable type and
phrasing (% ! #2.5, p & .001). For multiplication users, for whom
the alignments were inverted, there was a marginal trend in the
inverse (predicted) direction (% ! 2.1, p & .07).
The pattern of results matched those of Experiment 3A, and the

main interaction was statistically significant. Overall, the impact
was quite large: The reversal rate when aligning correct syntax
across representations was 0.26, while that of more difficult in-
verted problems was 0.56. Overall, the reversal rate was not lower
among division (0.41) than multiplication productions (0.38). The
reversal rate was lower among the more easily transcribed direct

comparisons (0.31) than among hypothetically phrased problems
(0.49, p & 0.01). If anything, division problems were more sen-
sitive to notational alignment than were multiplication problems.
Although divisions may well encourage richer modeling than do
standard multiplication equations, this does not eliminate the im-
portant role played by notational alignment.

General Discussion
Four experiments matched predictions made by the notation

alignment account. In equations for which two variable orders
were equally correct and conventional, undergraduate physics ma-
jors were much more likely to construct an equation that matched
the order of introduction in the story they were given, even when
that equation had to be retrieved from memory. People apparently
engaged in situation modeling and story understanding neverthe-
less show bias in favor of story order, demonstrating that extra
heuristics and conceptual confusions are not necessary to account
for reversals. Furthermore, across a wide range of equation struc-
tures and story formats, including those previously hypothesized to
resist heuristic transcription, to encourage modeling, or to support

Figure 3. Reversal error pattern in Experiment 3A. The error bars represent within-bin standard errors.
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operational interpretations of symbols, reversal rates were pre-
dicted by the alignment between the notational structure of pro-
vided or chosen equation formats and source story problems.
These results are all predicted if we start by assuming structure
mapping as a core process in the coordination of diagrams, equa-
tions, and other external aids to thought (Gentner, 1983; Martin &
Bassok, 2005; Nersessian 1992).
Participants constructing division equations were affected by

notation relations in problem statements, just as are people writing
the more common multiplication equations. As reported by Fisher
et al. (2011), students do seem to show a strong preference for
multiplications in algebraic statements over divisions, and this
preference does seem to interfere with success. However, the
benefits of division equations do not lie in their blocking the use of
surface details but precisely in the fact that the apparent structure
of divisions is aligned with that of the most natural English-
language relation statements.
All this is not to suggest that no student ever engages in pure

transcription, and it is certainly not meant to suggest that no
student ever misunderstands the difference between variables and
units. However, these errors appear not to be unique or even
frequent causes of reversals in relational equation construction.
The relative prominence of different strategies of equation gener-
ation is important for understanding mathematical practice and
mathematics education, though it is clearly one of degree rather
than of kind. Misconstruing student errors may be counterproduc-
tive both to helping students overcome these patterns of errors and
to producing comprehensive theoretical accounts of the role of
formal notations in reasoning.
Reversal errors are present in nearly all cases, including those

that are phrased so as to align notation structures. That fact has
proved difficult for the dual strategies account to explain (Cohen &
Kanim, 2005; cf. Christianson et al., 2012). In our view, part of the

difficulty stems from an inappropriate focus on finding the source
of errors: Dual route accounts treat correct behavior as an unin-
teresting default (see also MacGregor & Stacey, 1993). A more
appropriate conceptual approach to the problem of equation pro-
duction is to ask how students succeed at all. Although the dual
route account generally assumes that understanding of algebraic
syntax is fairly robust, substantial evidence suggests that it is not.
For instance, students are often more successful at solving prob-
lems phrased in natural language than in algebraic syntax (Koed-
inger, Alibali, & Nathan, 2008; Koedinger & Nathan, 2004).
Despite the difficulty students have in forming symbolic equations
to model multiplicative relations, they do not seem to have trouble
interpreting the natural-language expressions: Around 90% are
able to correctly report that there are more students than professors
(Martin & Bassok, 2005; Wollman, 1983) in the standard phrasing;
when the symbolic relation is replaced by numerical relations,
college-level students have little difficulty solving structurally
identical problems (Wollman, 1983).
In the alignment view espoused here and in Fisher et al. (2011),

the successful procedure involves two (nonsequential) tasks: se-
lecting an appropriate equation frame and aligning selected frames
with the source situation. If a reasoner succeeds in selecting an
appropriate frame for a multiplicative relational equation (regard-
less of whether the operation chosen is multiplication or division),
in the absence of alignable information the reasoner will have an
equal chance of producing correct and inverted equations. If this is
a core component of the process of formalization, then we cannot
expect to eliminate it through direct training in algebraic syntax.
Indeed, we conducted a pilot study with graduate students in
physics attending a highly ranked university, asking them to solve
two-variable problems with count variables like those discussed
here (There are five rhinos for every six elephants). With the
standard direct comparison and multiplicative frame, graduate

Figure 4. Reversal error pattern in Experiment 3B. The error bars represent within-bin standard errors.
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students in physics gave reversed equations 48% of the time (95%
CI [0.24, 0.71]). That graduate students in physics who make
relatively few other errors and are surely free of most conceptual
errors about mathematical syntax nevertheless reverse equations at
a high rate suggests a central role for notational structures in
alignment.
The better question to ask is not the source of errors, but what

sorts of activities influence reasoners away from this base rate. In
each of our tasks, participants were more likely overall to produce
correct than incorrect responses. One possibility is that semantic
knowledge contributed to overcome incorrect mappings. Another
is that success was driven by simple but useful strategies such as
checking answers by substituting plausible numbers, or verifying
relative magnitude relations among the quantities. In the context of
alignment, these can be seen as probing the dynamics of an
analogy; that is, making sure that the text and equation transform
isomorphically. In any event, squarely framing the problem of
equation modeling as one of explaining success, not failure, seems
likely to facilitate progress in deriving successful training proce-
dures and in constructing productive models of reasoner behavior.
Our capacity for wholly abstract relational reasoning may be

strikingly limited. Algebra and its accompanying notation are a
paradigmatic case of purely symbolic thought. That experienced
users of algebra rely on concrete physical structure suggests the
interpretation that purely symbolic thought is itself largely
achieved not through complex abstract internal resources but
through the cooption—in this case via external formal nota-
tions—of resources typically devoted to representing concrete
relations and features. On this view, notation does not mirror
thought. Instead, notation gives us something to think about.

References
Anderson, J. R. (2005). Human symbol manipulation within an integrated
cognitive architecture. Cognitive Science, 29, 313–341. doi:10.1207/
s15516709cog0000_22

Bassok, M., Chase, V. M., & Martin, S. A. (1998). Adding apples and
oranges: Alignment of semantic and formal knowledge. Cognitive Psy-
chology, 35, 99–134. doi:10.1006/cogp.1998.0675

Bassok, M., Wu, L., & Olseth, L. K. (1995). Judging a book by its cover:
Interpretative effects of content on problem solving transfer. Memory &
Cognition, 23, 354–367.

Bates, D., & Maechler, M. (2010). lme4: Linear mixed-effects models
using S4 classes (R package version 0.999375–35) [Computer software].
Retrieved from http://CRAN.R-project.org/package!lme4

Bever, T. G., Jandreau, S., Burwell, R., Kaplan, R., & Zaenan, A. (1990).
Spacing printed text to isolate major phrases improves readability.
Visible Language, 25, 74–87.

Carlson-Radvansky, L. A., & Logan, G. D. (1997). The influence of
reference frame selection on spatial template construction. Journal of
Memory and Language, 37, 411–437. doi:10.1006/jmla.1997.2519

Chatterjee, A., Southwood, M. H., & Basilico, D. (1999). Verbs, events and
spatial representations. Neuropsychologia, 37, 395–402. doi:10.1016/
S0028-3932(98)00108-0

Christianson, K., Mestre, J. P., & Luke, S. G. (2012). Practice makes
(nearly) perfect: Solving “students-and-professors”-type algebra word
problems. Applied Cognitive Psychology, 26, 810–822. doi:10.1002/acp
.2863

Clement, J. (1982). Algebra word problem solutions: Thought processes
underlying a common misconception. Journal for Research in Mathe-
matics Education, 13, 16–30. doi:10.2307/748434

Clement, J., Lochhead, J., & Monk, G. S. (1981). Translation difficulties in
learning mathematics. American Mathematical Monthly, 88, 286–290.
doi:10.2307/2320560

Cohen, E., & Kanim, S. E. (2005). Factors influencing the algebra “reversal
error.” American Journal of Physics, 73, 1072–1078. doi:10.1119/1
.2063048

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating
Amazon’s Mechanical Turk as a tool for experimental behavioral re-
search. PLoS ONE, 8, e57410. doi:10.1371/journal.pone.0057410

Dantzig, T. (1930). Number: The language of science. A critical survey
written for the cultured non-mathematician. New York, NY: Macmillan.

Fisher, K. J., Borchert, K., & Bassok, M. (2011). Following the standard
form: Effects of equation format on algebraic modeling. Memory &
Cognition, 39, 502–515. doi:10.3758/s13421-010-0031-6

Gentner, D. (1983). Structure-mapping: A theoretical framework for anal-
ogy. Cognitive Science, 7, 155–170. doi:10.1207/s15516709cog0702_3

Goldstone, R. L., Landy, D., & Son, J. Y. (2010). The education of
perception. Topics in Cognitive Science, 2, 265–284. doi:10.1111/j
.1756-8765.2009.01055.x

Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the
weather: How display salience and knowledge affect performance in a
graphic inference task. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 36, 37–53. doi:10.1037/a0017683

Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of
arithmetic word problems: A comparison of successful and unsuccessful
problem solvers. Journal of Educational Psychology, 87, 18–32. doi:
10.1037/0022-0663.87.1.18

Hinsley, D., Hayes, J. R., & Simon, H. A. (1977). From words to equations.
In P. Carpenter & M. Just (Eds.), Cognitive processes in comprehension
(pp. 89–106). Hillsdale, NJ: Erlbaum.

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd
ed.). New York, NY: Wiley.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of
structure: A theory of analogical access and mapping. Psychological
Review, 104, 427–466. doi:10.1037/0033-295X.104.3.427

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from
childhood to adolescence. New York, NY: Basic Books.

Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2008, April 25). The
advantage of abstract examples in learning math. Science, 320, 454–
455. doi:10.1126/science.1154659

Kirshner, D. (1989). The visual syntax of algebra. Journal for Research in
Mathematics Education, 20, 274–287. doi:10.2307/749516

Kirshner, D., & Awtry, T. (2004). Visual salience of algebraic transfor-
mations. Journal for Research in Mathematics Education, 35, 224–257.
doi:10.2307/30034809

Koedinger, K. R., Alibali, M. W., & Nathan, M. J. (2008). Trade-offs
between grounded and abstract representations: Evidence from algebra
problem solving. Cognitive Science, 32, 366–397. doi:10.1080/
03640210701863933

Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story
problems: Effects of representations on quantitative reasoning.
Journal of the Learning Sciences, 13, 129 –164. doi:10.1207/
s15327809jls1302_1

Kranjec, A., Lehet, M., Bromberger, B., & Chatterjee, A. (2010). A sinister
bias for calling fouls in soccer. PLoS ONE, 5, e11667. doi:10.1371/
journal.pone.0011667

Landy, D., & Goldstone, R. L. (2007a). Formal notations are diagrams:
Evidence from a production task. Memory & Cognition, 35, 2033–2040.
doi:10.3758/BF03192935

Landy, D., & Goldstone, R. L. (2007b). How abstract is symbolic thought?
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 33, 720–733. doi:10.1037/0278-7393.33.4.720

Th
is
do
cu
m
en
ti
s
co
py
rig
ht
ed
by
th
e
A
m
er
ic
an
Ps
yc
ho
lo
gi
ca
lA
ss
oc
ia
tio
n
or
on
e
of
its
al
lie
d
pu
bl
ish
er
s.

Th
is
ar
tic
le
is
in
te
nd
ed
so
le
ly
fo
rt
he
pe
rs
on
al
us
e
of
th
e
in
di
vi
du
al
us
er
an
d
is
no
tt
o
be
di
ss
em
in
at
ed
br
oa
dl
y.

13ABSTRACT NUMERIC RELATIONS



Maass, A., & Russo, A. (2003). Directional bias in the mental representa-
tion of spatial events. Psychological Science, 14, 296–301. doi:10.1111/
1467-9280.14421

MacGregor, M., & Stacey, K. (1993). Cognitive models underlying stu-
dents’ formulation of simple linear equations. Journal for Research in
Mathematics Education, 24, 217–232. doi:10.2307/749345

Malle, G. (1993). Didaktische Probleme der elementaren Algebra [Didac-
tical problems of elementary algebra]. Wiesbaden, Germany: Vieweg.

Marquis, J. (1988). Common mistakes in algebra. In A. F. Coxford & A. P.
Shulte (Eds.), The ideas of algebra, K-12: 1988 yearbook (pp. 204–
205). Reston, VA: National Council of Teachers of Mathematics.

Martin, S. A., & Bassok, M. (2005). Effects of semantic cues on mathe-
matical modeling: Evidence from word-problem solving and equation
construction tasks. Memory & Cognition, 33, 471–478. doi:10.3758/
BF03193064

Mason, W., & Suri, S. (2012). Conducting behavioral research on Ama-
zon’s Mechanical Turk. Behavior Research Methods, 44, 1–23. doi:
10.3758/s13428-011-0124-6

Mestre, J. P., & Lochhead, J. (1983). The variable-reversal error among
five cultural groups. In J. Bergeron & N. Herscovics (Eds.), Proceedings
of the Fifth Annual Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education (pp.
180–188). Montreal, Ontario, Canada: International Group for the Psy-
chology of Mathematics Education.

Mochon, D., & Sloman, S. A. (2004). Causal models frame interpretations
of mathematical equations. Psychonomic Bulletin & Review, 11, 1099–
1104. doi:10.3758/BF03196743

Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics

of conceptual change in science. In R. N. Giere (Ed.), Cognitive models
of science (pp. 3–45). Minneapolis: University of Minnesota Press.

Novick, L. R., & Catley, K. M. (2007). Understanding phylogenies in
biology: The influence of a Gestalt perceptual principle. Journal of
Experimental Psychology: Applied, 13, 197–223. doi:10.1037/1076-
898X.13.4.197

Paige, J. M., & Simon, H. A. (1966). Cognitive processes in solving
algebra word problems. In B. Kleinmuntz (Ed.), Problem solving: Re-
search, method, and theory (pp. 51–119). New York, NY: Wiley

Patsenko, E. G., & Altmann, A. M. (2010). How planful is routine behav-
ior? A selective-attention model of performance in the Tower of Hanoi.
Journal of Experimental Psychology: General, 139, 95–116. doi:
10.1037/a0018268

Reed, S. K. (1987). A structure-mapping model for word problems. Jour-
nal of Experimental Psychology: Learning, Memory, and Cognition, 13,
124–139. doi:10.1037/0278-7393.13.1.124

Ross, J., Zaldivar, A., Irani, L., & Tomlinson, B. (2010). Who are the
Turkers? Worker demographics in Amazon Mechanical Turk. Retrieved
from http://www.ics.uci.edu/~jwross/pubs/SocialCode-2009-01.pdf

Sherin, B. L. (2001). How students understand physics equations. Cogni-
tion and Instruction, 19, 479–541. doi:10.1207/S1532690XCI1904_3

Weaver, C. A., III, & Kintsch, W. (1992). Enhancing students’ compre-
hension of the conceptual structure of algebra word problems. Journal of
Educational Psychology, 84, 419–428. doi:10.1037/0022-0663.84.4
.419

Wollman, W. (1983). Determining the sources of error in a translation from
sentence to equation. Journal for Research in Mathematics Education,
14, 169–181. doi:10.2307/748380

Appendix

Sample Materials

Experiment 1
There were two stories, altering the order of introduction of the

elements and which mass was in motion.

Single Asteroid First
Imagine an asteroid, with mass m. This asteroid flies through

space, occasionally coming close enough to other asteroids for
gravity between them to become nonnegligible. We’ll consider
several such instances, and in each case use Newton’s law of
universal gravitation to find the attractive force between the aster-
oid and its current nearest neighbor.

Several Asteroids First
Imagine a group of asteroids, with masses m1, m2, and m3.

These asteroids fly through space, and around a certain time
come close enough to another asteroid (mass ! m) for gravity
to become nonnegligible. We’ll consider each asteroid in turn,
and in each case use Newton’s law of universal gravitation to

find the attractive force between each moving asteroid and the
stable asteroid.

Experiment 2

Questions from one condition are presented. For other condi-
tions, the text was inverted, but the narratives were fixed. An
equation frame was presented beside each figure. The frames used
are shown in Figure 1.
1. Janet is baking cookies. She needs to have the same weight of

both chocolate chips and nuts. Measuring these ingredients on a
balance, she notices that for every seven chocolate chips on one
side of the balanced scale, there are five nuts on the other side.
Using C to represent the weight of one chocolate chip, and N to
represent the weight of one nut, fill in the equation below so that
it correctly expresses the relationship between the chocolate chips
and nuts when the scale is balanced.
2. A bakery sells cakes and pies by weight. To determine what

price it should charge for each dessert, it compares the weights of

(Appendix continues)
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cakes and pies using a scale. The number of cakes times four on
one side of the balanced scale is five times the number of pies on
the other side. Using C to represent the number of cakes and P to
represent the number of pies, fill in the equation below so that it
correctly expresses the relationship between the cakes and pies
when the scale is balanced.
3. A veterinarian is comparing the weight of kittens to the

weight of puppies. The number of kittens times three on one side
of the balanced scale is two times the number of puppies on the
other side. Using K to represent the weight of one kitten and P to
represent the weight of one puppy, fill in the equation below so
that it correctly expresses the relationship between the kittens and
puppies when the scale is balanced.
4. A nutritionist explores the difference in weight between boys

and girls using an enormous balance. She places boys on one side
of a scale and girls on the other. For every nine boys on one side
of the balanced scale, there are seven girls on the other side. Using
B to represent the number of boys and G to represent the number
of girls, fill in the equation below so that it correctly expresses the
relationship between the boys and girls when the scale is balanced.
5. A University of Richmond English professor assigns readings

based on how heavy different books are. Before class one day,
when balancing a scale in his office, he discovers that the number
of textbooks times three on one side of the balanced scale is five
times the number of fiction books on the other side. Using T to
represent the weight of one textbook and F to represent the weight
of one fiction book, fill in the equation below so that it correctly
expresses the relationship between the textbooks and fiction books
when the scale is balanced.
6. A jeweler uses a scale to compare the weight of emeralds and

the weight of rubies. For every three emeralds on one side of the
balanced scale, there are two rubies on the other side. Using E to
represent the number of emeralds and R to represent the number
of rubies, fill in the equation below so that it correctly expresses
the relationship between the emeralds and rubies when the scale is
balanced.
7. A hardware store owner places screws on one side of a scale

and nails on the other side. She notices that for every 11 screws on
one side of the balanced scale, there are 13 nails on the other side.
Using S to represent the weight of one screw and N to represent
the weight of one nail, fill in the equation below so that it correctly
expresses the relationship between the screws and nails when the
scale is balanced.
8. Bob has a scale. There are some deegers on one side and some

koozles on the other side of a balanced scale. The number of
deegers times eight on one side of the balanced scale is five times
the number of koozles on the other side. Using D to represent the
number of deegers and K to represent the number of koozles, fill

in the equation below so that it correctly expresses the relationship
between the deegers and koozles when the scale is balanced.

Experiments 3A and 3B
Two conditions are presented; as described in the main text,

variable and comparison type were crossed in the actual study.
Furthermore, the role of “bags” and “hats” were counterbalanced
throughout the description and instructions.

Instructions
Please read the following story, and follow the instructions at its

end. Please don’t write anything down; solve the problem in your
head, and write the answer directly into the form.

Hypothetical Comparison and Cost Condition
Olivia went shopping for clothes. She found a great sale and

bought many hats and bags. At the sale, bags cost a certain price,
and hats cost a different price. As she traveled home, she thought
about what she had bought. Olivia noticed that she spent the same
amount on hats as she did on bags.
Olivia loves hats but already has too many. She had to deliber-

ately stop herself from buying many more than she did. Olivia
noticed that if she had bought four hats for every hat she actually
bought, she would have bought as many bags as hats.
Use H to represent the COST OF ONE HAT at the sale Olivia

found, B to represent the COST OF ONE BAG, and the number 4
to fill in the equation below so that it reflects the relationship
between hats and bags.

Direct Comparison and Number Condition
Olivia went shopping for clothes. She found a great sale and

bought many hats and bags. At the sale, bags cost a certain price,
and hats cost a different price. As she traveled home, she thought
about what she had bought. Olivia noticed that she spent the same
amount on hats as she did on bags.
Olivia loves bags but already has too many. She had to delib-

erately stop herself from buying many more than she did. Olivia
noticed that she bought four hats for every bag.
Use H to represent the NUMBER OF HATS Olivia actually

bought, B to represent the NUMBER OF BAGS she actually
bought, and the number 4 to fill in the equation below so that it
reflects the relationship between hats and bags.
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