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Abstract 
Much research on explanation has focused on the ability of 
explanations to draw upon relevant knowledge to aid in 
understanding some event or observation.  However, 
explanations may also structure our understanding of events 
and related tasks more generally, even when they add no 
relevant information. In three experiments, we show that 
explanations affect performance in simple, binary decision 
tasks where they could not possibly add relevant information. 
Whereas people with no explanation for differences in event 
probabilities tended to “probability-match,” people with an 
explanation tended to “over-match” (behave more 
normatively). The results suggest that explanations play a role 
in structuring our understanding of events, in addition to 
adding relevant information. 

Keywords: explanation, probability matching, decision-
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Explanations support much intelligent behavior. We explain 
trends in the stock market in hopes of avoiding future 
economic woes, explain car failure to diagnose a problem, 
and we even explain why works of art gives us a chill just to 
enhance our appreciation (Keil, 2006). In recent years, 
cognitive scientists have begun to examine the importance 
of explanation (Lombrozo, 2006; Keil & Wilson, 2000), but 
despite agreement that explanations serve many goals, the 
empirical literature has focused on a limited set of tasks and 
functions. The purpose of this paper is to show a novel (and 
perhaps unintuitive) case where having an explanation 
changes performance in order to suggest a broader utility of 
explanation than currently exists in the literature. 
 Most work on explanation has examined cases where the 
explanation provides additional relevant information to help 
one understand the connection between an observation and 
other knowledge. For example, category learners often 
explain the correlations between an exemplar’s properties to 
better understand the category structure (e.g., a bird nests in 
trees because it has wings), and this affects their 
applications of the category (e.g., Murphy & Wisniewski, 
1989). Explanations also improve our understanding of 
social events, where we often call upon prior social 

experiences to make sense of others’ behavior (Jones & 
Nisbtt, 1972). Laboratory studies of how explanations draw 
upon relevant knowledge relate directly to cases in the real 
world, where, for example, explaining the cause of a social 
problem (e.g., homelessness, global warming) by 
incorporating knowledge of social structures affects how we 
might try to solve that problem. 
 A major goal in our research program to examine and 
understand the role of explanation in cognition is to identify 
and explore the many ways that explanations can influence 
behavior. Although we are very interested in how 
explanations invoke relevant knowledge to help us 
understand events (Hummel, Landy, & Devnich, 2008; 
Hummel & Ross, 2006; Taylor, Landy, Ross, & Hummel, 
2008), in this paper we investigate a different aspect of how 
explanations may influence performance.  We consider 
whether explanations sometimes affect performance in very 
simple tasks without adding relevant information. 
 Our novel theoretical claim is that explanations can affect 
performance without adding task-relevant information by 
providing general ways to organize an understanding of a 
situation or event. We evaluated this idea by examining how 
explanations impacted behavior on a relatively low-level 
task, in which additional causal information is of no use.  In 
our view, the explanations served as a task frame, which led 
participants who received it to structure their understanding 
of the task differently from those without an explanation. 
 We chose a binary prediction task, in which participants 
predict which of two outcomes will occur on the next trial, 
for many trials. On these tasks, people tend to “probability 
match,” or predict each outcome roughly the percentage of 
times that the outcome tends to occur (for a review, see 
Vulkan, 2000). This behavior is non-normative, since 
predicting the most likely event on each trial maximizes 
correct predictions. 
 We added explanations to this paradigm in the following 
way: Participants in the No Explanation condition were told 
they would be predicting which of two events would occur 
on the next trial, from trial to trial, and that one event was 
more likely than another. Participants in the Explanation 



condition were also provided a story explaining why the two 
events occurred with unequal likelihood, though this 
explanation did not directly add information about the 
probabilities of the events. Critically, any differences 
between conditions in this paradigm could not be due to the 
explanation adding relevant causal information. 
 How might explanations of the distribution source affect 
behavior in the probability matching paradigm? We 
speculated that explanations would lead the Explanation 
group to “overmatch”—to predict the more common 
outcome a greater percentage of times than it actually 
occurred (to behave more normatively)—more than the No 
Explanation group.  There are many possible reasons for 
this consistent with our view that explanations provide a 
way to structure one’s understanding of a task: For one, 
having an explanation might shape one’s expectations about 
the likelihood of the two events, such that on each trial, the 
more likely event is preferred in the prediction. 
Alternatively, the explanation might draw attention to the 
mechanisms causing one event to occur more often, leading 
to increased confidence in the more likely outcome.  
 Setting aside, for the moment, how exactly explanations 
might structure the task, note that any difference across 
conditions would suggest that explanations add something 
more to cognition than task-relevant causal information. 
Furthermore, if explanations cause differential behavior in 
what is considered to be a relatively low-level task (fish and 
pigeons show the same behavior as humans; Behrand & 
Bitterman, 1961; Bullock & Bitterman, 1962), then the 
effects of explanation could be impressively far reaching. 

Experiment 1–Basic Probability Matching 
The goal of Experiment 1 was to investigate whether 
explanations serve partly to structure people’s 
understanding of basic tasks (like the probability matching 
task).  If so, then people with explanations should perform 
differently than those without. In the case of probability 
matching, we predicted that the Explanation condition 
would show more over-matching than the No Explanation 
condition. Further experiments would narrow in on the 
particular reasons for the explanation advantage. 

Method 
Participants and Design Forty-six University of Illinois 
undergraduates participated for course credit, twenty-five 
randomly assigned to the Explanation condition and twenty-
one to the No Explanation condition. 
 
Materials Two line drawings were shown to participants 
during the experiment, one representing a medal winner 
from the Olympics and another representing the Great Wall 
of China (see Figures 1a and 1b.) All other instructions were 
displayed in text on a computer screen. 

 
 

Figures 1a and 1b: Drawings used in Experiments 1 and 2 
depicting an Olympic medal winner and the Great Wall. 

 
Procedure The experiment was conducted on Macintosh 
computers. Participants signed a consent form prior to the 
experiment and then read the instructions. For the 
Explanation condition, instructions stated that a 
commemorative coin was produced for the 2008 Olympics 
and that a mistake was made in manufacturing so the side 
with the medal winner tended to come up more often than 
the side with the Great Wall. Participants were asked to 
make predictions for a sequence of coin flips as to whether, 
on the next trial, the coin would come up with the medal 
winner or the Great Wall. After their prediction, they would 
be shown the outcome of the flip. Finally, they were told 
that a counter at the top of the screen would indicate their 
overall performance after each trial. A black line would 
indicate their performance level on the previous trial. 
 The No Explanation condition was identical, except that 
participants were not told about the coin; instead, they were 
asked to predict which of two line drawings (either a person 
or two wavy lines) would appear on the next trial, for a 
sequence of trials. Furthermore, they were told that the 
drawing of a person tended to appear more often than the 
drawing of the two wavy lines. 
 There were 100 prediction trials. For 70 trials, the 
outcome was the person and for 30 the outcome was the two 
wavy lines.  Subjects were not told how many trials the 
person would appear.  On each trial, participants were asked 
to press the “P” key to predict the medal winner (person) or 
the “W” key to predict the Great Wall (two wavy lines.) 
After they entered their choice, participants viewed the 
outcome and their performance level, and then they pressed 
the “N” key to continue. Every 20 trials, they were 
reminded the purpose of the experiment. The Explanation 
condition was told, “Remember to choose the side of the 
coin that you think will come up next,” and the No 
Explanation condition was told, “Remember to choose the 
drawing that you think will come up next.” 
 After the prediction phase, participants were told that the 
experiment contained 100 trials and were asked to estimate 
how many of these trials resulted in the person side up. 
Next, participants answered questions regarding their 
strategies during the predictions task. They were given a list 
of options in a text file and told to delete the strategies they 
did not use. They were also given the same set of strategies 
again and asked which they thought was the best strategy 
for going about the task. The strategy reports did not lead to 



consistent results across experiments, so they are omitted 
from our analyses and discussion. At the end of the session, 
participants were debriefed. 
 Due to experimenter error, 4 participants in the 
Explanation condition and 1 participant in the No 
Explanation condition did not complete the frequency 
judgments and strategy report tasks. In addition, 2 
participants in the Explanation condition and 3 participants 
in the No Explanation did not give a frequency judgment 
(answered “I don’t know.”) Finally, 2 participants in the 
Explanation condition and 5 participants in the No 
Explanation condition entered a range of values for their 
frequency judgment (e.g., “between 60 and 80 trials.”) For 
these participants, we used the mean of the endpoints in our 
analyses. 

Results and Discussion 
Predictions As predicted, the Explanation condition 
predicted the more frequent outcome greater than 70% of 
the time (78.5 trials, SD = 9.7) and on more trials than the 
No Explanation condition (71.9 trials, SD = 11.3). The 
Explanation condition average was significantly different 
from 70, t(24) = 4.40, p < .01, but the No Explanation 
condition average was not, t(20) = .77, p = .45. The 
difference between conditions was significant, t(40) = 2.101, 
p < .05. 
 
Frequency Judgments The conditions did not differ in 
their average frequency judgments, suggesting that the 
increase in predictions for the more likely event was not due 
to inflation in perceived frequency of that event. On 
average, participants in the Explanation judged the 
frequency of the person drawing to be 73.8 (SD = 7.2), 
compared to 73.3 (SD = 9.6) in the No Explanation 
condition.  The groups did not differ in their average 
frequency estimations, t(27) = .31, p = .76. 
 The results from Experiment 1 show that simply having 
an explanation can affect performance in a basic cognitive 
task without adding relevant information. This perhaps 
unintuitive outcome is consistent with the idea that 
explanations serve partly to structure one’s understanding of 
a task, and thus, lead to differences in behavior. 

Experiment 2–Probability Matching With Bets 
We had two goals for Experiment 2: first, to replicate the 
findings from Experiment 1, and second, to increase the 
power of the difference between conditions by allowing 
participants to place a bet on each prediction, which could 
then be used to weight the individual predictions. 

                                                        
1 Throughout the paper, degrees of freedom for between 
subjects tests with unequal sample sizes were the Welch-
Satterthwaite values.  This may cause degrees of freedom to 
differ within the same experiment across tests, since they 
are dependent on the variances of the samples. 

Method 
Participants and Design Twenty-two University of Illinois 
undergraduates participated for course credit, equal numbers 
assigned to the Explanation and No Explanation conditions. 
 
Materials and Procedure The materials and procedure 
were identical to Experiment 1, except that participants in 
both conditions made bets on their predictions. After each 
prediction, they were told to bet 1, 2, or 3 chips (not 
corresponding to monetary value) by pressing the key 
corresponding to their bet. If they were correct (incorrect), 
they would win (lose) the amount of chips bet. The 
performance bar at the top of the screen was adjusted 
corresponding to the magnitude won or loss on each trial. 

Results and Discussion 
Predictions Experiment 2 replicated the results from 
Experiment 1. Participants in the Explanation condition 
predicted the person side up, on average, on 88.5 trials (SD 
= 11.4), whereas participants in the No Explanation 
condition predicted the person side up on 77.1 trials (SD = 
17.3) of trials. The No Explanation condition average did 
not differ from 70, t(10) = 1.36, p = .20, but the Explanation 
condition average did, t(10) = 5.38, p < .01. The difference 
between conditions only approached significance, t(17) = 
1.83, p = .08, although, when summing the wins and losses 
across bets, the average for the Explanation condition (2.21, 
SD = .63) was greater than that of the No Explanation 
condition (1.49, SD = .94), t(17) = 2.11, p < .05. 
 
Frequency Judgments As in Experiment 1, there were no 
differences in the frequency estimates, suggesting that the 
Explanation advantage is not due to belief in a greater 
likelihood of the more common event. On average, 
participants in the Explanation condition judged the 
frequency of the person drawing to be 74.9 (SD = 5.8), 
compared to 73.4 (SD = 7.3) in the No Explanation 
condition.  The groups did not differ significantly, t(18) = 
.65, p = .62. 

Experiment 3–Diagnosis with Multiple Cues 
In Experiment 3, we generalized our results with the basic 
probability matching task to a slightly richer scenario where 
people made predictions based on the presence of a 
diagnostic cue. Before each prediction, participants viewed 
one of two possible cues, which were associated with 
unique (and opposite) outcomes for 70% of the trials. The 
outcomes were reversed for the remaining trials. 
Participants were told to make their prediction of the 
outcome based on the cue, but as in Experiments 1 and 2, 
only the Explanation condition was told why the cues 
tended to lead to particular outcomes. Generally, the task 
was isomorphic to two intermixed basic probability 
matching tasks—one task for trials with cue A, and another 
task with cue B. 



Method 
Participants and Design Thirty-five University of Illinois 
undergraduates participated for course credit, twenty 
randomly assigned to the Explanation condition and fifteen 
to the No Explanation condition. 
 
Materials Two drawings of “red blood cells” were shown to 
participants during the experiment, one very round cell and 
the other very large. All other instructions were displayed in 
text on a computer screen. 
 
Procedure The experiment was conducted on Macintosh 
computers. Participants signed a consent form prior to 
participating.  The procedure was similar in structure to that 
of the previous two Experiments, but the cover story was 
new.  For the Explanation condition, instructions stated that 
participants would learn to measure genetic markers for 
particular traits. They would be shown drawings of bloods 
cells coming from patients who have either a gene that 
generally causes them to be taller than average, or a gene 
that promotes having a strong immune system. The gene 
that causes tallness usually (but not always) also causes 
blood cells to be larger than average. The gene that 
improves the immune system usually also causes red blood 
cells to be particularly round. Participants’ task was to 
observe the shape and size of an individual’s blood cell and 
then predict whether that individual was either taller than 
average or has a strong immune system. To predict taller 
than average, they should push the “T” key, and to predict 
strong immune system, they should push the “I” key. After 
their prediction, they would be shown the correct answer—
“The outcome was T (or I.)” Finally, they were told that a 
counter at the top of the screen would indicate their overall 
performance after each prediction. A black line would 
indicate their performance level on the previous trial. 
 The No Explanation condition was identical, except that 
participants were not told that the shapes referred to red 
blood cells, nor that they were using the shapes to predict 
the traits “taller than average” and “good immune system”; 
instead, they were told simply that if the shape is 
particularly large, the outcome is likely to be “T.” If the 
shape is particularly round, the outcome is likely to be “I.” 
 There were 120 prediction trials. For round cue trials, 42 
(70%) of the outcomes were “I,” and for large cue trials, 42 
(70%) of the outcomes were “T”; the other trials had the 
opposite outcome. Participants were not told the actual 
number of trials the more likely outcome would appear. On 
each trial, participants were asked to press the “T” key or 
the “I” key to predict the outcomes “T” or “I.” After they 
entered their choice, participants viewed the outcome and 
their performance level and then they pressed the “N” key to 
continue. Every 20 trials, they were reminded the purpose of 
the experiment. The Explanation condition was told, 
“Remember to choose the trait you think the next patient 
will have. Press T if you think they will have a gene that 

tends to make them taller than average. Press I if you think 
they will have one that encourages them to have a strong 
immune system,” and the No Explanation condition was 
told, “Remember to choose the result that you think will 
come up next. Results will be either T or I.” 
 After the prediction phase, participants were told that the 
experiment contained 120 trials, on 60 of which the cue was 
“round” and on the other 60 the cue was “large.” Separately 
for each cue, they were asked to guess how many of the 60 
trials resulted in the “T” outcome. Then, they answered 
questions regarding their strategies during the predictions 
task. They were asked to give two strategy reports, one for 
trials when the cue was “round” and another for when the 
cue was “large.” After the strategy questionnaire, 
participants were given a debriefing form and dismissed. 
 Three participants in the Explanation condition and one 
participant in the No Explanation gave frequency estimates 
of 60 for both of the cues. Since these estimates were likely 
due to confusion regarding the estimation task, they were 
removed from the analyses. 

Results and Discussion 
Predictions The predictions data were analyzed for each 
cue, separately, and then collapsed across the two cues.  For 
the “round” cue, the Explanation condition predicted a 
strong immune system greater than 70% of the time (88.5% 
of trials, SD = 11.1) and on more trials than the No 
Explanation condition (76.2% of trials, SD = 15.1). The 
Explanation condition average was significantly different 
from 70, t(19) = 7.44, p < .01, but the No Explanation 
condition average was not, t(14) = 1.60, p = .13. The 
difference between conditions was significant, t(25) = 2.66, 
p < .05. 
 For the “large” cue, the Explanation condition predicted 
tall greater than 70% of the time (84.5% of trials, SD = 
16.5) and on more trials than the No Explanation condition 
(75.1% of  trials, SD = 15.6). The Explanation condition 
average was significantly different from 70, t(19) = 3.92, p 
< .01, but the No Explanation condition average was not, 
t(14) = 1.27, p = .22. The difference between conditions was 
only marginally significant, t(31) = 1.72, p < .10. 
 Collapsed across cue, the Explanation condition predicted 
the more likely outcome greater than 70% of the time 
(86.5% of trials, SD = 13.6) and on more trials than the No 
Explanation condition (75.7% of trials, SD = 15.1). The 
Explanation condition average was significantly different 
from 70, t(19) = 5.41, p < .01, but the No Explanation 
condition average was not, t(14) = 1.45, p = .17. Finally, the 
Explanation condition predicted significantly more trials 
with the person side up than did the No Explanation 
condition, t(28) = 2.19, p < .05. 
 
Frequency Judgments The frequency judgments did not 
differ between conditions, both when the cue was “large” 
and when it was “round.” When the cue was “large,” 



participants in the Explanation condition judged the 
frequency of the “T” outcome, on average, to be 42.4 
(70.7%; SD = 10.4), compared to 38.9 (64.8%; SD = 9.5) in 
the No Explanation condition.  The groups did not differ in 
their average frequency estimations, t(29) = .98, p = .34. 
When the cue was “round,” participants in the Explanation 
judged the frequency of “T” outcome, on average, to be 26.6 
(44.3%; SD = 14.6), compared to 23.5 (39.2%; SD = 11.2) 
in the No Explanation condition.  The groups did not differ 
significantly, t(29) = .66, p = .51. 
 Collapsed across cue, for each participant we computed 
the estimated frequency of the more likely outcome by 
averaging the estimate of “T” when the cue was “large” and 
60 minus the frequency estimate of “T” when the cue was 
“round” (since all trials that were not “T” were “I”). The 
average estimate for the Explanation condition was 37.9 
(63.2%; SD = 8.0), compared to 37.7 (62.8%; SD = 10.0) in 
the No Explanation condition. The group averages were not 
significantly different, t(25) = .06, p = .95. 
 The overall pattern of results was similar to that of 
Experiments 1 and 2. Participants in the Explanation 
condition over-matched (predicted the more likely outcome 
more than 70% of trials), but participants in the No 
Explanation condition did not. Also, collapsed across cues, 
the Explanation condition predicted the more likely outcome 
more often than the No Explanation condition. Finally, the 
frequency judgments of the two groups were not 
significantly different. 

General Discussion 
Many previous studies have shown that explanations are 
crucial for thinking and reasoning tasks, in which the 
explanation helps to understand some observation by 
drawing upon relevant prior knowledge. However, our 
findings suggest that explanations are not merely 
information couriers, since they also affect performance 
(indeed, improve normative responding) on even very 
simple tasks where additional information is not at all 
useful. Based on these results, we suggest that one role 
explanations play in cognition is to help to organize a 
person’s understanding of a situation or event, so that 
having an explanation leads to differences in behavior 
relative to not having an explanation. 

How Explanations Might Structure Understanding 
As we mentioned earlier, explanations may help to shape 
our understanding of an event in many possible ways. The 
goal for our discussion is to consider a few possibilities in 
more detail, and to suggest how future research could 
explore their implications. 
 
Increased Rational Responding One possibility is that 
giving an explanation for the differences in the event 
likelihoods tended to engage more analytic processes in the 
Explanation condition than in the No Explanation condition. 

In effect, this might have raised the number of participants 
in the Explanation condition who thought deeply about the 
task and decided consciously to endorse the normative 
strategy—to choose the more likely event on every trial. 
Previous research shows that people using the normative 
response pattern do tend to be higher in cognitive ability, 
suggesting a relation between high-level reasoning and 
normative responding (West & Stanovich, 2003). 
Conveniently, this pattern could be observed in the data by 
comparing the number of strictly normative participants in 
the two conditions. 
 In fact, we found very small and highly similar levels of 
normative participants across conditions. In Experiment 1, 
both conditions had 1 such participant. In Experiment 2, we 
found 3 and 2 normative participants in the Explanation and 
No Explanation conditions, respectively. In Experiment 3, 
we found zero normative participants. These data suggest 
that the explanation condition was not more likely to 
endorse the normative strategy, suggesting that a shift in 
rational reasoning was does not account for the effect. 
 
Mental Simulation Another possibility is that having an 
explanation for the difference in outcome likelihoods allows 
one to mentally simulate the event (e.g., the coin flip) before 
each prediction, and this leads to a bias in predicting the 
more likely outcome, perhaps because it is more natural to 
simulate. This account applies to Experiments 1 and 2, 
where the coin flip is a discrete, simulable event, but less to 
Experiment 3 where simulating the relation between the 
shape of a blood cell and a medical trait seems less natural. 
 Whether or not all cases of explanation affecting 
performance are due to mental simulation, there are ways to 
test the role of simulation in explanation-based predictions. 
For example, one could directly manipulate the ease of 
simulating the events and look for an influence of 
simulation ease on levels of normative responding. Another 
method is to have participants perform a task that would 
either facilitate or work against the particular simulation 
(see Barsalou, 2008, for a review of simulation effects), 
where the prediction is that simulation-consistent behaviors 
lead to more predictions of the likely outcome. Current 
studies in our lab are beginning to address these issues. 
 
Strength and Believability Previous research shows that 
the strength, or believability of an explanation impacts 
judgments related to the explananda. For example, 
Fugelsang et al. (2004) gave people either a strong or weak 
explanation for the relation between some causal variable 
and an outcome and then had people observe contingencies 
between the variable and the outcome. After viewing the 
same contingency data, people with a stronger explanation 
gave higher ratings of causal power than those with a weak 
explanation. If explanations affect judgments of causal 
power, they might also affect sequential predictions. 
Specifically, people with a stronger explanation may predict 
the more likely outcome on a greater number of trials than 



those with a weak explanation. Along the same lines, one 
could view our No Explanation condition as the Extremely 
Weak Explanation condition, in which case our current 
results are attributable to explanation strength. 
 A simple way to test this idea is to generate explanations 
with more and less strength and look for differences in 
performance as a function of strength. Also, to test the role 
of strength in our current in experiments, one could ask 
participants before the prediction task for an estimate of the 
number of trials the more likely event will occur. If 
estimates of frequency parallel causal power judgments, 
then one would predict higher frequency estimates in the 
Explanation Condition than the No Explanation Condition. 
We are currently running a version of Experiment 2, where 
in place of the predictions task, people estimated how many 
trials (out of 100) the picture of the person would appear. 
Considering only people who gave an estimate greater than 
50 (those who understood from the instructions that the 
person would appear more often), the average estimate from 
the Explanation condition is 68.4 (SD = 9.4) compared to 
69.5 (SD = 5.8) in the No Explanation condition, which is 
not a significant difference, t(20) = .37, p > .1. 
 In each of the accounts we considered, the explanation 
was purported to structure the task by adding cognitive 
resources other than particular, task-relevant information. 
Whether these resources include general reasoning 
procedures, mental simulations, or top-down biases for 
interpreting data, the simple presence of an explanation 
appears to be a catalyst for higher cognitive processing. 
That is, explanations affect the structure, as well as the 
content, of thought. 

Conclusion 
 Explanation is a powerful cognitive function. Previous 
research on explanation has concentrated on the ability of 
explanations to call upon relevant knowledge to improve 
our understanding of some event, and this knowledge often 
affects people’s judgments in related tasks. Although we 
agree that explanations are crucial for connecting everyday 
observations to knowledge, we suggest that explanations 
have other functions beyond adding relevant information. 
Explanations may shape our understanding of events and 
scenarios, such that behavior in related tasks is often 
different (and sometimes normatively improved) compared 
to behavior without an explanation. Future research will 
need to explore this view with developments in theory and 
new empirical findings. 
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