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ABSTRACT 

A general disconnect exists between most 
models of structure-based similarity and the 
empirical literature they attempt to capture.  
Models of structure processing often purport to 
explain behavior at the level of the individual, 
but most studies have analyzed structure sensi-
tivity at the level of mean aggregates across 
individuals.  We begin to address this issue by 
presenting several re-analyses of similarity 
ratings among simple objects originally pre-
sented by Larkey and Markman (2005), spe-
cifically attempting to identify sources of indi-
vidual variability.  Individual variability was 
generally coherent across items of a given 
type, suggesting that sample noise is to some 
degree reflective of individual differences, and 
not mere response noise (Goldstone, 1994).  
We find three primary sources of variation 
among individuals: value placed on feature 
matches which compete with identical feature 
matches on other objects (a kind of MOP, see 
Goldstone, 1994), value placed on feature 
matches that support analogical matches 
(MIPs), and value placed on the holistic well-
matchedness of each object in the scene.  We 
suggest that the coherent variability of indi-
viduals across items provides a valuable con-
straint on the processes of structure sensitivity, 
and may shed light on the relationship between 
analogical reasoning and other aspects of hu-
man cognition.  Furthermore, successful proc-
ess models of structure processing should cap-
ture variation among individuals through sys-
tematic variation of parameters 

 
 

INTRODUCTION 

          Structural information is critical 
throughout cognition. It plays a role in many, 
perhaps most, high-level cognitive acts (Gent-
ner, 2003; Hofstadter, 2001), from recognizing 
objects (Biederman, 1987), to comparing 
scenes (Goldstone, 1994; Markman and Gent-
ner, 1993), to making decisions (Petkov & 
Kokinov, 2006), to building explanations 
(Falkenhainer and Forbus, 1990; Hummel, 
Landy & Devnich, 2008). Computational 
models have been instrumental in understand-
ing the effects of structure on performance. 
However, while the models typically charac-
terize the cognitive processes of individuals, in 
practice, performance and model fits have al-
ways been presented at the level of groups 
(e.g., Falkenhainer et al, 1989; Hummel & 
Holyoak, 1997; Goldstone, 1994; Larkey and 
Love, 2003). If we assume that structure proc-
essing is an unvarying fact about cognition, 
that individuals do not differ systematically in 
structure processing, then analyses on group 
means are ideally revealing. However, to the 
extent that the mechanisms that underlie per-
formance in structure sensitive tasks do vary, 
the standard research practice runs the risk of 
missing a potentially interesting aspect of hu-
man structure processing. 

          In this paper, we will analyze judgments 
of similarity between simple objects.  Aspects 
of such judgments have frequently been attrib-
uted to structure-sensitive processes (e.g., 
Goldstone, 1994; Larkey & Markman, 2005; 
Taylor & Hummel, in press), and many models 
attempt to capture both analogical correspon-
dence and the role of structure in similarity 
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judgments (SME, Falkenhainer et al, 1989; 
CAB, Larkey & Love, 2003; SIAM, Gold-
stone, 1994; Taylor & Hummel, in press).  In 
some of these models (e.g., SIAM), similarity 
and structural evaluation are tightly linked 
processes; in others similarity is computed on 
the basis of structural correspondence (e.g., 
LISA; see Taylor & Hummel, in press). In the 
latter case, our discussion applies primarily to 
the application of structure matches in similar-
ity judgments, rather than to the evaluation of 
structural correspondences themselves. 

 
BACKGROUND: CONSTRAINTS ON 

STRUCTURE PROCESSING 

A major goal of analogy research has been 
to identify the constraints on structure process-
ing based on relational and non-relational 
properties of potential analogs. Gentner (1983) 
originally argued for the importance of struc-
tural relations in analogy, distinguishing rela-
tional matches from object-based matches. 
Falkenhainer, Forbus, and Gentner (1990) de-
veloped the Structure Mapping Engine (SME) 
to evaluate analogies based on systems of rela-
tions, preferring analogies with greater struc-
tural consistency. SME accounts for people’s 
general tendency to prefer relational matches 
to purely object-based matches (e.g., Gentner 
et al, 1993) and for people’s similarity judg-
ments, which show a greater impact of differ-
ences among objects that that play similar rela-
tional roles (alignable differences) than objects 
that play different roles (non-alignable differ-
ences; Markman & Gentner, 1993).  

Emphasis on the role of structure and rela-
tional alignment is clearly crucial for under-
standing human behavior; however, in at least 
some domains in which structure plays a cru-
cial role, relational alignability interacts with 
other factors in determining behavior. Gold-
stone (1994; Goldstone & Medin, 1994) dem-
onstrated that while feature matches do con-
tribute to similarity, even for structurally simi-
lar objects, these feature matches interact with 
structural properties. Early stages of structure 
processing rely crucially on “matches out of 
place” (MOPs), or feature matches across 

items that play different relational roles. After 
structural alignments become more obvious, 
“matches in place” (MIPs) come to dominate.  
Furthermore, feature similarities show a pref-
erence for 1-to-1 correspondences, so that 
MOPs that compete with a MIP contribute 
little if anything to similarities (a MOP com-
petes with a MIP when they both relate the 
same feature of the same object, but one (the 
MIP) aligns with the higher level structure). 
Larkey and Markman (2005) replicated these 
finding for non-speeded judgments and 
showed that only one extant model of structure 
processing, SIAM (Goldstone, 1994), provided 
qualitative fits to MOP-sensitive similarity 
judgments. In particular, these data provide 
constraints on candidate models of analogical 
reasoning, selecting only those that incorporate 
a role for featural/semantic, as well as struc-
tural representations of objects under compari-
son (c.f. Taylor & Hummel, in press). 

 

INDIVIDUAL CONSTRAINTS ON 
STRUCTURE PROCESSING 

Although the prior literature has capital-
ized on cases where people tend to agree about 
what is a good analogy, it is readily apparent 
that substantial disagreement about the quality 
of particular alignments exists as well, perhaps 
especially among people interested in analogy. 
Indeed, in one lab meeting during which we 
discussed this topic, conversation descended 
into congenial name-calling, divided between 
those who found the pair of pairs of items in 
Figure 1A most appealing, and those who pre-
ferred the comparison illustrated by Figure 1B. 

The distribution of traits that run in our lab 
are admittedly unlikely to generalize to the 
larger population, but fortunately, other em-
pirical evidence also points toward individual 
differences in relational reasoning. In the do-
main of similarity judgment, Simmons and 
Estes (2008) found that people systematically 
differed in their ratings of the similarity of 
items that were thematically or analogically 
related. Furthermore, individuals that gave 
higher ratings for thematically similar items 
had a lower need for cognition (c.f., Cacioppo, 
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Petty, & Kao, 1984). Another source of indi-
vidual differences in relational reasoning stems 
from the work on culture and cognition. Nis-
bett and colleagues (e.g, Nisbett, Peng, Choi, 
& Norenzayan, 2001) argue from an extensive 
database of empirical results that members of 
East Asian culture show more sensitivity to the 
relations of objects to context than do mem-
bers of Western culture.  
 

Figures 1a (left; pair AB/BA) and 1b (right; 
AB/AC). Two object pairs with disputable 
relative similarities. 
 
        These data argue compellingly that dif-
ferent individuals do, in fact, differ in the way 
they treat relational and associative informa-
tion, but of course it is unlikely that they ex-
haust the sources of variation.  Furthermore, it 
is not clear what the impact of these results is 
on theories of structure processing. For in-
stance, does variability in the use of thematic 
(co-occurrence) information suggest variability 
in a structure processing, or variability in how 
people interpret the word “similarity”?  Con-
sonant with the latter interpretation, Simmons 
and Estes (2008) found that people who identi-
fied thematic proximity as a valid source of 
similarity were far more likely to use thematic 
proximity in making similarity judgments, 
suggesting that the primary differences lay 
how the participants construed similarity.  
Thus, it is not clear how relevant such differ-
ences are to theories of structure mapping. 
Nevertheless, there is some suggestion that 
how people invoke structure in making deci-
sions may differ among individuals. 
         In this paper we report evidence of indi-
vidual differences in structure processing 

mechanisms from a task designed to test mod-
els of similarity. With this evidence, we will 
then focus our discussion on implications for 
models and theories of structure-based similar-
ity judgments more generally.  

ANALYSES 

Description of Data 

         We analyzed a set of similarity judg-
ments over pairs of object pairs.  This data was 
originally collected by Levi Larkey and Art 
Markman.  Larkey and Markman (2005) pre-
sented a portion of this data set, along with the 
fits of a variety of models to the mean ratings 
of various types of items.  Particulars of the 
experimental design and procedure are pre-
sented in detail in the original paper. A total of 
116 people participated in two studies con-
ducted at the University of Texas at Austin. 
The first study (n=58) manipulated the color 
and shape of simple object pairs; the second 
study (n=58) manipulated color and texture.  
Participants rated 162 displays, each consisting 
of two pairs of objects.  Participants were in-
structed to rate the similarity of the pairs on a 
scale from 1 to 6.  The objects varied in either 
color or shape, or in color and texture pattern; 
there were four possible values along each 
dimension.  One pair in any rated item (i.e., a 
single display) consisted of two objects with 
different values on each dimension.  The other 
pair varied systematically. 
         Rated items (pairs of object pairs) are 
coded based on the relations between the ob-
ject features (see Table 1).  Following Larkey 
and Markman’s coding scheme, object pairs 
are coded by their values on the relevant di-
mensions.  The base pair is always coded 
AB/AB: that is, along one dimension, the 
value that one object had is named A, the value 
that the other object had is named B; the sec-
ond dimension is named identically.  The sec-
ond pair is then named for the corresponding 
feature values in corresponding objects. To 
demonstrate, Figure 1b depicts an AB/AC pair. 
The shapes from the top two objects (trian-
gle=A and circle=B) are repeated for the bot-
tom two objects, hence, the first AB. The color 
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from the top left object (color=A) is repeated 
for the bottom left object, but the color for the 
other object is new (color=C), hence AC. Us-
ing this scheme, Larkey and Markman created 
nine patterns of single-dimension feature shift-
ing. These were presented in all possible pair-
wise combinations, across two different spatial 
relationships. 
         Goldstone (1994) identified two types of 
similarities between object pairs like those in 
Table 1—“matches in place” (MIPs) and 
matches out of place (MOPs). Take for exam-
ple the item pairs with code AB/AA from Ta-
ble 1. An example MIP is the match in the 
shapes of the two squares; the match is “in 
place”, because the square on the left maps 
(corresponds) best to the square on the right. 
An example MOP is the matching colors on 
the square and the circle; this match is “out of 
place” because the square and circle do not 
map.   

Following Goldstone (1994), we distin-
guish between MOPs that compete  with a cor-
responding MIP in the same feature (C-
MOPs), and  those which do not (NC-MOPs).  
An example of a competing MOP is given by 
the AB/AA item in Table 1. The matching 
color blue between the square on the left and 
the circle on the right is a competing MOP, 
because the color blue also creates a MIP be-
tween the square on the left and the square on 
the right. That is, the MOP dimension “blue” 
also contributes to a MIP for the same pairs. 
The AB/CA item shows a similar item with an 
NC-MOP, rather than a C-MOP. 
We re-analyzed the entire data set from Larkey 
and Markman, collapsing across dimension 
and spatial position, since the authors found 
little effect of spatial relations on the judg-
ments. After simplification across notational 
symmetries, this analysis separates items into 
16 distinct types (see Table 1 for various rele-
vant properties of the transformations). 
 

Correlations among judgments 

Our first goal was to verify whether there are, 
in fact, sources of noise based in individual 
preferences (other than stochastic noise). 

Table 1: Types of stimuli from Larkey and 
Markman (2005) 
Code Example MIP C-

MOP 
NC-

MOP 
Num. 
Good 

AA/AA  2 2 0 3 
AA/AC  2 1 0 3 
AA/BC  2 1 0 4 
AA/CD  1 1 0 4 
AB/AA  3 1 0 4 
AB/AB  4 0 0 4 
AB/AC  3 0 0 4 
AB/BA  2 0 2 4 
AB/CA  2 0 1 4 
AB/CD  2 0 0 4 
AC/AC  2 0 0 2 
AC/BC  2 0 1 3 
AC/CA  1 0 1 3 
AC/CB  2 0 0 4 
AC/CD  1 0 0 2 
CD/CD  0 0 0 0 

 
First consider a null model, in which each 

individual really is identical.  To reiterate: this 
is not a view anyone holds explicitly, but it is 
the implicit working assumption of formal 
modeling efforts. If the impact of environ-
mental structure on similarity calculations 
really were fixed, one might imagine that each 
participant in a study arrives with identical 
preference judgments, and that both inter- and 
intra- participant noise comes from noise on 
the response to each item.  Goldstone (1994) 
followed this approach by modeling variability 
in responses by adding Gaussian noise to the 
output of the SIAM model.  Taken as a theo-
retical commitment (which is certainly not 
what Goldstone intended), this assumption 
predicts that ratings made on different items by 
particular subjects would be independent. The 
alternative approach—assuming that noise 
results from genuine (possibly parametric) 
differences between individuals in the proc-
esses that generate or use structural align-
ments, predicts that item preferences should be 
systematic across participants.  We therefore 
explored the correlations, across participants, 
for each of the 128 item types.  Table 2 pre-
sents all of the pairings that were significant 
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after Bonferroni correction (p<0.00046) or 
marginally significant results (p<0.00094). 

 
Table 2. Correlations 

1st pair 2nd pair r 
AB/AB AB/AC .32* 
AB/AB AA/BC -.44 
AB/BA AB/CA .39 
AB/BA AA/AC -.41 
AB/AA AB/AC .40 
AB/AA AC/CD -.5 
AB/AC AA/BC -.56 
AB/AC AA/AA -.32 
AB/AC AA/CD -.61 
AB/AC AC/AC .33 
AB/AC AB/CA -.33 
AB/CA AB/CD .54 
AB/CA AA/AA -.46 
AB/CA AA/AC -.56 
AB/CD AA/BC -.34 
AB/CD AA/AA -.45 
AB/CD AA/AC -.56 
AA/BC AA/AA .46 
AA/BC AA/CD .47 
AA/BC AA/AC .32* 
AA/BC AC/AC -.34 
AA/AA AA/CD .36 
AA/AA AA/AC .49 
AA/AA CD/CD -.33 
AA/CD AC/AC -.33 
AC/BC AC/CD .38 
AC/CD CD/CD .50 

 
 
As can be seen, even after correcting for 

the large number of comparisons performed, 
many substantial correlations were found. Par-
ticipants in this study appear to vary system-
atically across multiple items.  Furthermore, 
some patterns can already be discerned in these 
data.  Correlations tend to be strongly positive 
among pairs that for both items had the same 
value along some dimension (i.e., items with 
an “AA”), and negative between “AA” pairs 
and other pairs.   

 

 
Figure 2: Relations between principle 

components 1 and 2.  
 

Principal components of variation 

Having established the existence of pat-
terns among individual subjects, we used a 
Principal Components Analysis to attempt to 
clarify the sources of meaningful variation.  
We analyzed the components of the space of  
participant responses, using each item as an 
input dimension.  We independently analyzed 
Larkey and Markman’s Texture and Shape 
experiments, and found very similar, and gen-
erally independently significant patterns in 
each group (with one noted exception).  For 
ease and clarity of exposition, we present data 
here from an analysis of the combined data set. 
The first four dimensions of this analysis ac-
counted for significant proportions of the vari-
ance among subjects by the broken stick test 
(c.f. Jolliffe, 2001); we were only able to satis-
factorily interpret the first three.  Between 
them, these three dimensions accounted for 
57% of the subject-wise variance.  Biplots of 
the first and second, and first and third dimen-
sions are shown in figures 2 and 3.   
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Figure 3: Relations between principle compo-
nents 1 and 3. 
  
 
         The first principle component accounted 
for 24% of the total variance.  Loadings on this 
dimension are shown in Figure 4a.  We inter-
pret this dimension as consistent primarily of a 
sensitivity to the presence and number of C-
MOPs in a particular stimulus type (shown in 
Figure 4b).  The correlation between number 
of C-MOPs and the first principal component 
was r=.86 (p<.001).  Participants at one ex-
treme of this dimension preferred a C-MOP to 
a simple mismatch (for instance, they preferred 
AB/AA to AB/AC); participants at the other 
end gave higher ratings to items with simple 
mismatches. 
 
         The second principal component, which 
accounted for 18% of the variance (Figure 5a) 
is readily interpreted as the number of MIPs a 
stimulus has (r=.92; p<.001).  MIPs were gen-
erally positive—for 115 of the 116 partici-
pants, number of MIPs correlated positively 
with ratings; however, the magnitude of that 
positive influence varied substantially across 
individuals.  
 

 
Figures 4a (left) and 4b (right): Loading of 
principle component 1 and number of compet-
ing MOPs for each item type. 
 
         Both of the first two components corre-
sponded quite closely to factors that have pre-
viously been identified as relevant to similarity 
judgments. The third principal component has 
no such ready interpretation.  However, this 
dimension does correspond reasonably well 
(r=.69, p<.01) to a rather intuitive idea: the 
number of objects in a scene that have some 
shared features, ignoring correspondences.  
 

 
Figures 4a (left) and 4b (right): Loading of 
principle component 1 and number of compet-
ing MOPs for each item type. 
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Consider the pair AC/BD. In this item, three of 
the objects have some featural overlap with an 
item in the comparison pair.  The fourth object 
(the one with features “C” and “D”) has no 
featural overlap with anything. This item 
therefore gets coded with the value three. 

The correspondence between the number 
of good feature matches and the third principal 
component was significant, as mentioned 
above.  However, in this case, the correspon-
dence was only significant in the texture ex-
periment (r=.81, p<.0001). In the shape ex-
periment, the correlation was less robust 
(r=.49, p=.054). Although the dimension corre-
lates quite well with the number of objects 
with a match, it substantially mis-predicts the 
value of the third principal component on iden-
tical items (see Figures 6a and 6b), and fails to 
capture qualitatively important aspects of the 
third component, such as the difference be-
tween the three largest positive values, and the 
other values. This source of variation requires 
further study before it can be confidently in-
terpreted. 

 
Figures 6a (left) and 6b (right): Loadings of 
principle component 3 and number of objects 
with a match for each item type. 

Magnitude of the variation 
 
Generally, different groups of individuals 

identified by the PCA analysis showed differ-
ent but related ordinal rating patterns.  As an 
illustration, Table X shows the order among 
mean ratings for the first and fourth quartile of 
dimension 1.  As expected, people in one ex-
treme rated AB/AA systematically higher than 
people inhabiting the opposite extreme.  In-
deed, neither group’s average matches the 
overall average patterns reported by Larkey & 
Markman (2005). In the first quartile, AB/AA 
is stronger than AB/BA, while in the fourth, it 
is weaker than AB/AC (for this group, having 
an extra MOP actually appears to weaken the 
mapping strength!).  Moreover, the shift gen-
eralizes quite systematically.  Fourth quartile 
subjects systematically dis-prefer patterns with 
C-MOPs (items with code --/AA or AA/--) 
relative to those in the first quartile by 2 to 4 
positions. 
 
Table 3: Ordinal mean ratings among different 
quartiles of dimension 1 

Rating 1st Quartile 4th Quartile 
1 (highest) AB/AB AB/AB 
2 AB/AA AB/BA 
3 AB/BA AB/AC 
4 AB/AC AB/AA 
5 AA/AA AB/CA 
6 AA/AC AB/CD 
7 AB/CA AC/AC 
8 AA/BC AA/AA 
9 AB/CD AA/AC 
10 AA/CD AC/CB 
11 AC/AC AA/BC 
12 AC/CB AC/CA 
13 AC/CA AC/BC 
14 AC/BC AA/CD 
15 AC/CD AC/CD 
16 (lowest) CD/CD CD/CD 
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On this analysis, the ordering presented 
by Larkey and Markman appears to be an av-
erage across disparate individuals rather than a 
uniform absolute. Nonetheless, it is also the 
case that many individuals did conform to the 
average ordering.  About 40% of subjects fit 
the ordinal relationships Larkey and Markman 
report as significant.  Thus, a successful model 
of similarity will be compatible with the mean 
behavior pattern—but it will have to be com-
patible with other orderings as well. 

DISCUSSION 

         We examined a collection of similarity 
ratings for pairs of object pairs differing along 
two simple features. Our analysis revealed 
significant and interpretable patterns of indi-
vidual variation in endorsement of various 
kinds of comparisons, corresponding to the 
first three components of variation in the prin-
cipal components analysis.  The first principle 
component revealed that participants varied in 
how they weighed repeated matches of the 
same value along a particular dimension (C-
MOPs). This is particularly interesting: while 
such matches have been noted to have little 
positive impact on match quality (Goldstone, 
1994), previous analyses have not considered 
whether this fact resulted from a consistently 
small positive weight accorded to such fea-
tures, or to differences among participants.  
Here, we see that in fact most subjects do 
weight these repeated features, but ‘disagree’ 
about whether they positively impact scene 
similarity.   

We interpreted the second principal com-
ponent as variation in how much the presence 
of matches in place affected participants’ 
judgments of similarity.  All but one partici-
pant positively weighted feature matches 
among corresponding objects; however there 
was a substantial range in just how much these 
MIPs mattered to similarity.  

Finally, and somewhat more speculatively, 
the third principle component suggests that 
some participants highly weight scenes in 
which each object had at least one “good 
match”, regardless of the higher-order struc-

tural correspondences.  Again, for all partici-
pants more matches contributed to similarity, 
but there was substantial range in the value 
placed on this kind of holistic integration. 

Although we found substantial variability 
across participants, our analyses also show 
robust commonalities. For essentially every 
subject, matches in place increased match 
quality—though such matches mattered sub-
stantially more to some raters than to others. 
This finding is consistent with the hypothesis 
that most participants were using structured 
correspondences to evaluate similarity but that 
this process had different outcomes for differ-
ent individuals.  

Put this way, a tempting account of the 
individual differences may be to assume that 
all participants used a general-purpose 
structure-processing-and-similarity algorithm, 
but some participants used it more than others. 
However, an account based purely on degrees 
of a single structure processing mechanism 
seems unable to account for the results. Both 
MIPs and C-MOPs are only defined in the 
context of structural matches, and variation in 
their affect on similarity was largely orthogo-
nal. Since both sources of variation require 
structural analysis, these findings are more 
readily interpreted by assuming that different 
people are using structural information in dif-
ferent ways.  In the case of a model such as 
SIAM, this suggests variation in the mappings 
themselves, since similarity and mapping are 
tightly integrated. Other models which propose 
a sequential process in which the current best 
mapping is evaluated independently of 
similarity, which is then computed from the 
mapping (e.g., LISA) might posit differences 
in how a fixed mapping translates into 
similarities.  Either way, it seems unlikely that 
our results can be accommodated by a simple 
assumption of more or less use of structure. 
        A promising approach to accounting for 
individual variability, in our view, is to incor-
porate into computational models theories and 
commitments about how parameters within the 
model vary across individual reasoners and 
reasoning instances (see Larkey and Love, 
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2003, for one example of this kind of reason-
ing). 
         In fact, we believe that research into in-
dividual differences in structure processing 
will have substantial consequences for the 
evaluation of models. Consider for example 
the model comparison study by Larkey and 
Markman (2005). The authors concluded that, 
of the models they tested, only SIAM could 
correctly predict the ordinal pattern of average 
judgments using a single set of parameters. 
Following standard procedures for the evalua-
tion of models in the analogy literature, they 
are quite correct (although LISA has since 
been shown also to be able to match this ag-
gregate pattern, Taylor & Hummel, in press). 
However, to the extent that individual differ-
ences play a substantial role in structure proc-
essing, future studies following this approach 
to model comparison will be incomplete, and 
the conclusions potentially incorrect. Such 
studies should also consider whether the mod-
els capture the distribution of similarity ratings 
using a principled set of parameter ranges, 
rather than a single set of parameters.  If alter-
native models such as CAB (Larkey & Love, 
2003) and SME (Falkenhainer et al, 1989) are 
able to successfully describe this distribution, 
then their accounts remain quite viable. 

Another more empirically-based direction 
for the study of individual differences is to 
explore personality, cultural, or situational 
factors that influence structure-sensitivity.  For 
example, Kim and Markman (2006) found 
with both reasoning and memory tasks that 
people with higher “fear of isolation” (FOI) 
show increased sensitivity to relations between 
objects and contexts. This was true in popula-
tions with chronic FOI and in experimentally 
induced FOI participants. Kim, Narvaez, and 
Markman (2007) also found that individuals 
with an independent, as opposed to interde-
pendent self-construal, showed heightened 
sensitivity to contextual relations. Taken to-
gether, modeling and empirical approaches 
that incorporate a role for individual differ-
ences promise to shed substantial light on 
theories of structure processing. 

A final, more speculative direction to con-
sider is to evaluate the role of other structure 
sensitive processes in leading to the individual 
differences in similarity judgment. It could be 
that people with different similarity profiles 
bring different goals to bear on the similarity 
task. If so, then differences in structure proc-
essing may point to the influence of other 
processes on the fringe of analogy and com-
parison. Future work could integrate similarity 
judgment with other tasks to test for these rela-
tionships. 

CONCLUSION 

Our extended analyses of the data col-
lected by Larkey and Markman (2005) show 
that individuals’ similarity judgments varied 
systematically as a function of (a) number of 
competing MOPs, or MOPs with the same 
feature value as a separate MIP, (b) number of 
MIPs, and (c) number of object with at least 
one feature match. The weightings of these 
three dimensions varied orthogonally across 
individuals and each explained a substantial 
portion of variance. These findings pose a 
challenge to extant theories and models of 
structure-based similarity judgment, which 
characterize structure processing at the indi-
vidual’s behavior but are traditionally fit to 
aggregate data. 
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