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ABSTRACT 

We present a novel strategy for combining a 
probabilistic logic with analogical inference.  We 
apply the resulting inference engine to the task of 
categorical induction--deciding whether a cate-
gory bears a property, given that other, related 
categories do or do not have that property.  Fol-
lowing suggestions by Murphy, Sloman, and 
others, we model categorical induction as a proc-
ess of causal reasoning, by which knowledge 
gleaned from possible explanations of the prem-
ises is used to form conclusions about the cate-
gory. 
 

INTRODUCTION 

Explanation plays a central role in human 
cognition. People generate explanations for 
events quickly, flexibly, habitually and more 
or less explicitly, and the resulting explana-
tions provide a powerful basis for reasoning 
and persuasion. Explanations help us to under-
stand events (both expected and unexpected; 
e.g., “he’s walking on the street because the 
sidewalk is closed”) to solve problems (e.g., 
“the car won’t start because it’s out of gas”) 
and to predict the future (e.g., “the frogs are 
dying off because of pollutants in their envi-
ronments. If we don’t act soon, other animals 
will start dying off as well.”). They also play a 
central —perhaps the central—role in scien-
tific reasoning. 

People are also habitual inductive infer-
ence generators (see, e.g., Holland et al., 
1989), and as such we need some basis for 
estimating the likelihood of our inductive in-
ferences. This kind of likelihood estimation is 

typically discussed and modeled in terms of 
Bayesian (e.g., Griffiths & Tenenbaum, 2005; 
Kemp & Tenenbaum, 2009) or causal (e.g., 
Cheng, 1997; Novick & Cheng, 2004) reason-
ing. We present a model, Explanatory Reason-
ing for Inductive Confidence (ERIC), based on 
an alternative account of the process whereby 
we estimate the likelihood of our inductive 
inferences. 

The central hypothesis motivating ERIC is 
that explanations, especially explanations of 
the more implicit variety, play an essential role 
in our estimates of the likelihood of our induc-
tive inferences (Lombrozo, 2006; Medin, et al, 
2003; Sloman, 1994). For example, imagine 
that you hear that many robins in a particular 
city are infected by some new disease. Accord-
ing to ERIC, upon hearing this news you 
would immediately attempt (more or less im-
plicitly) to understand why they have the dis-
ease. That is, inductive generalizations are 
generated through an abductive explanatory 
process.  We assume that this process is likely 
to be largely implicit because we assume that 
you generate many potential explanations (e.g., 
“perhaps this is something that affects all 
songbirds”; “perhaps it is something that af-
flicts all birds”, “perhaps it is something about 
eating worms,” etc.), implicitly assigning a 
likelihood estimate to each. If you are then 
asked to assess the likelihood of a related in-
duction—for example, “what is the likelihood 
that sparrows will also be affected by this dis-
ease?”—We hypothesize that, as you did with 
the robins, you attempt to generate explana-
tions for why sparrows might get the disease. 
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But this time, the knowledge you bring to bear 
on generating these explanations includes the 
explanations you generated for robins. The 
more successfully the knowledge in your long-
term memory (LTM)—including your expla-
nations for the disease-stricken robins—
generates plausible and likely explanations for 
the inference, the more likely you will regard 
the inference that sparrows will get the disease. 

Analogy plays a crucial role in ERIC: be-
cause knowledge about one category is never 
knowledge about another, explanatory knowl-
edge must be adapted from one set of catego-
ries to any other.  Knowledge, in ERIC, is 
never represented as rules over abstract vari-
ables; instead, knowledge is always repre-
sented as propositions about properties associ-
ated with specific categories, or about (gener-
ally causal) relations between such proposi-
tions.  Analogical mapping is used to integrate 
surface similarity and structural commonalities 
between categories so that knowledge from old 
situation can be applied to current situations, to 
the degree that the situations correspond. That 
is, we treat analogical correspondence as a 
foundation of symbolic (rule-based) thought 
(see Gentner and Molita, 1998, who make just 
this suggestion).  

While there is insufficient space in this pa-
per to describe the model formally, the next 
section will attempt to provide an overview of 
its processes and assumptions. 

 
MODEL 

 
ERIC takes as input an explanandum—i.e., a 
thing to be explained: either a premise, which 
is assumed to be true (e.g., “robins get the dis-
ease”), or a query, whose probability is to be 
estimated (e.g., “sparrows will get the dis-
ease”)—and generates explanations of why the 
explanandum might be true. Applied to prop-
erty induction, the mechanism operates in two 
stages: First, ERIC explains the premise(s) and 
any knowledge gleaned from those explana-
tions is added to the knowledge base. Next, it 
explains the query using that augmented 

knowledge. The result of these processes is an 
estimate of the likelihood that the query is true. 

Given an explanandum, ERIC uses a base of 
knowledge—including propositions describing 
aspects of the world and causal connections 
between those aspects—to decide which of 
many possible circumstances are the actual 
cause of the explanandum. In some cases, 
ERIC evaluates potential causes already stored 
in its knowledge; in others it uses analogical 
mechanisms to postulate new facts or new 
causal links.  In the formalism reported here, 
the ACME algorithm was used (Holyoak & 
Thagard, 1989); however, the character of the 
model is not tied to the particulars of the map-
ping algorithm. Each coherent set of structures 
that describes a possible cause of the ex-
planandum is considered a potential explana-
tion. The degree to which the original facts and 
causal connections are believed, together with 
the quality of the licensing inferences, are used 
to assign to each explanation a likelihood.  

Consider Figure 1, which presents a possible 
state of knowledge. If C is the explanandum, 
then one possible explanation of C is A, which 
is weakly believed to be the reason that C is 
true. However, to the degree that C’ expresses 
a state of affairs similar to C, another possible 
cause of C is generated by analogy to B’ 
(which is strongly believed to be the cause of 
C’). Note that in this example, each node rep-
resents a group of statements (possibly a group 
of size 1); analogical inference is used to de-
termine how and how well the entities and 
relationships referred to in one group corre-
spond to those in another. Thus, the structures 
that serve to constrain the analogical inference 
are not detailed in Figures 1 and 2.   

Figure 2 illustrates the result of the analogi-
cal inference process: a novel fact B is 
(weakly) hypothesized; a connection between 
B and C is inferred with a level of belief sensi-
tive both to the strength of the connection be-
tween B’ and C’, and to the strength of the 
analogy; and stable analogical connections 
between B and B’, and between C and C’, and 
also between their component aspects are es-
tablished (the effect of stable analogical con-
nections will be discussed later). In the illus-
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trated case, B is a novel fact, and the corre-
sponding explanation is correspondingly weak; 
sometimes it is the case that the inferred ex-
planatory fact, B, is already known (but not 
linked to A). In these cases, the explanation 
will tend to be much stronger. 

The cause of each explanation (A and B in 
the example) is recursively explained (to a 
fixed depth), and analogical support, where 
available, is applied to each causal connection. 

Explanations combine to lend credence to 
the explanandum, after the manner of a prob-
abilistic argumentation system (Haenni et al, 
2000). If the explanandum is a newly given 
fact (i.e., a premise), then knowledge involved 
in the explanation is updated using a Bayesian 
strategy: each piece of knowledge involved in 
any explanation is updated to the degree to 
which confidence in it would tend to lead to 
confidence in the (known) explanandum. This 
updated knowledge is used to evaluate queries. 

 This approach captures the intuitions that 
inductive judgments are based on (abductively 
generated) explanations, and explanations in-
volve the application of analogical reasoning 
between distinct but related situations as a 
source of both guesses about causes, and of 
confidence in those causes. Furthermore, as we 
will demonstrate, the resulting model conforms 
to many observed patterns of human induction. 

Two additional connectives are also used. 
First is the causes relation (⇒), which denotes 
a causal relationship. 

 

 
Figure 1: A possible state of the knowledge of 

ERIC.  Facts A, B’, and C’ are known with cer-
tainty by the model; C represents an unknown 

explanandum.  One possible explanation for C is 
that it results from A. 

 
Figure 2:  The result of ERIC’s analogical infer-
ence mechanism acting on the knowledge in Fig-
ure 1.  The dashed figures reflect the analogical 
mapping, and the inferences licensed by it.  The 
arrows into B reflect ERIC’s subsequent search 

for support for the hypothesized B. 
 

For example, q⇒r should be read as “q (if true) 
would tend to explain (cause) r”. This is simi-
lar to implication, but is constrained to causal 
implication, and has a rather different role in 
the inference algorithm (described later). Note 
that, in contrast to some prior models (e.g., 
Falkenhainer, et al 1989; Hummel & Holyoak, 
1997, 2003), causal connections are treated as 
special types, and not as labeled two-place 
predicates (see also Hummel, et al., 2008). The 
second novel connective is the mapping rela-
tion, q⇆r, which states that q maps (i.e., have 
been identified as at least homomorphic) to r. 
We will denote conjunctions in mapping and 
cause relations as lists, in order to emphasize 
the intended psychological structures and to 
improve readability. For example, we will say 
{isa(dog, mammal), warm-
blooded(mammal)}⇒warm-blooded(dog): “to-
gether, the fact that a dog is a mammal and the 
fact that mammals are warm-blooded cause 
dogs to be warm-blooded”. 

 
Analogically Projectable literals as variables  

 
In ERIC, unlike most traditional proposi-

tional systems, there are no variablized infer-
ence rules; the only general rules are those 
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expressing the syntax of explanations and the 
probability estimates of combined terms. Rules 
governing inference are literal instances of 
prior knowledge. The applicability of known 
facts is governed first by their level of en-
dorsement (i.e., the probability estimate of the 
statement) and the projectability of their cate-
gories to the corresponding categories in the 
candidate statement. Projectability is quite 
similar to similarity, but is intended to capture 
the internal generalizability of literals.  Its 
formal definition will not be given here (a 
similar, similarity-based approach, has been 
used to implement rules in the CLARION ar-
chitecture; Sun, 2006). 

Casting rule application as a process of 
analogy over literals is consonant with several 
recent suggestions (Gentner and Molita, 1998; 
Hummel & Holyoak, 2003; Pothos, 2007). 
Replacing variables with projectable literals 
provides a natural way to create rules that are 
softly domain-limited. That is, rules are less 
and less applicable to more and more distant 
items and topics, but are not explicitly limited.   
 

SIMULATIONS 

For this paper, we chose to model reasoning in 
cases where knowledge is largely taxonomic.  
Inductions over taxonomic knowledge are well 
understood, and form a reasonable basis for 
evaluating models of induction (Heit, 2007). 
After presenting these results, we will provide 
initial simulations suggesting that the same 
model can also respond appropriately to ques-
tions about properties that are unlikely to be 
explained by taxonomic relations. 

The simulations reported were run using ar-
bitrarily chosen, rather than optimized values 
for the free parameters, such as the initial 
probability of an unsupported hypothesized 
fact (0.1) or causal relation (0.001). Depth 3 
solutions were constructed for all testing and 
reporting purposes. We also explored a variety 
of solution depths and free parameter values; 
results were qualitatively similar for a variety 
of meaningful values of the parameters.   

Two knowledge structures were used most 
of in these simulations. First, a taxonomic 

structure was constructed: several types of 
“animal” were described and several exem-
plars of each were described (2 mammals, 6 
birds, and 2 reptiles). Facts were included in 
knowledge stating that each animal and each 
type of animal was a variety of animal.  So for 
example isakindof(robin, animal) was in-
cluded in the knowledge base with a strength 
of 1.0.  However, isakindof(animal, animal) 
was deliberately given a strength of 0.0, as was 
isakindof(animal, robin). Also, “animals” 
were described as a kind of “living thing”. One 
causal relation given: a generic “property in-
clusion cause”, corresponding to “If x is a kind 
of y, and property z holds for y’s, then z will 
tend to cause it to hold for x’s as well”.   

The second knowledge structure included 
both taxonomic and non-taxonomic knowl-
edge. Approximately 200 facts were added to 
the knowledge base, including causal stories 
(e.g., “turtles are protected from attacks be-
cause of their hard shells”), typical properties 
of categories, and relations between properties. 
Results for each simulation are presented using 
each of these knowledge structures.  

Heit (2000) reviews several benchmark 
properties of taxonomic inductions. We illus-
trate how ERIC produces several of these be-
haviors, and then consider some more subtle 
behaviors in non-taxonomic domains. 
 

Similarity and inductive strength 
 

In ERIC, property induction depends on the 
extent to which an assertion can be explained.  
Such explanations, however, apply not only to 
their target assertion, but to “nearby” asser-
tions as well.   

For instance, say that property f is asserted 
of category A. ERIC will induce several expla-
nations of that fact. When presented with the 
query f(B), two factors will impact how “near” 
that situation is to the original f(A). First, the 
more A and B engage in similar statements, 
the more likely it is that explanations of f(A) 
will be to be adapted to strong arguments 
about f(B). Second, because ERIC uses projec-
tability to map past examples to new situa-
tions, and projectability is quite similar to 
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similarity, to the extent that B is similar to A, 
the analogical mappings will describe more 
similar situations, and therefore the explana-
tions assigned a higher strength. 

The fact that property inductions between 
categories are stronger when the categories are 
similar was one of the first properties of induc-
tive arguments to be identified in the psycho-
logical literature (Rips, 1975).  

Results from ERIC were obtained using a 
blank predicate (i.e., a predicate that appeared 
nowhere in knowledge, and was uniformly 
similar to other predicates). A series of induc-
tive premise-query pairs was formed, of the 
form if Blank(A), how likely is it that 
Blank(B)?, for all distinct categories A and B.  

Figure 3 (top panel) displays the relationship 
between the projectibility of A to B, and the 
resulting inductive strength.  

 
Figure 3: Relationship between projectibility and 
inductive strength for taxonomic knowledge only 

(left), and with both taxonomic and additional 
featural and explanatory knowledge (right) 

 

As predicted, in the absence of other knowl-
edge, projectibility and induction are strongly 
related. The bottom panel of Figure 3 displays 
the results of the same analysis, from simula-
tions using the slightly richer domain knowl-
edge.  

The positive relationship between projecti-
bility and induction is still apparent (r=.38, 
p<.01), but considerably more structure can be 
seen.  This structure results from the fact that 
good explanations now do not so closely 
match featural overlap. Good explanations, in 
this knowledge base, largely result from taxo-
nomic proximity (that is, most explanations are 
of the form “Probably robins have blank be-
cause birds generally have blank.” Feature 
overlap tends to correspond to taxonomic cate-
gory, but sometimes deviates. Thus, inductions 
between atypical members of categories may 
be stronger than their projectibility would sug-
gest. Similarly, highly similar categories from 
different branches of the taxonomy may be 
highly projectible; however explanations in 
terms of taxonomic class will adapt only 
weakly between them. 
 

Category Inclusion 
 
ERIC does not represent categorical statements 
as absolute. That is, if it is true for ERIC that 
flies (bird), it is not necessarily the case that 
flies (robin). Therefore, it is possible for dif-
ferent supercategories of a particular category 
to differently generalize to that category. In-
deed, in general, the farther up in the a type 
hierarchy a supercategory is from a category, 
the less properties of that supercategory will be 
generalized to the more particular category. 
This behavior can be seen in Figure 4, and is a 
well-known property of human categorization 
(Osherson, 1990; Sloman, 1998): close su-
perordinates project their properties more 
strongly to a category than far superordinates.  
In ERIC, this happens for two reasons. First, a 
category is likely to share more features and 
typical explanations of those features with a 
proximal superordinate category than with a 
distant supercategory, and these shared  
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Figure 4. The average strength of an induction to 
a species category from various other categories. 
 

features will generalize well. Second, because 
the close superordinate can be explained using 
a more distant taxonomic ancestor, asserting a 
property of the close superordinate tends to 
lead ERIC to assume that the property holds of 
the distant one as well. Thus, there are more 
good, supported explanations of the query 
category when the close superordinate is the 
premise. 

 
Typicality of premise categories 

   
We’ll consider two different ways of charac-

terizing the extent to which a subcategory is 
typical of a basic category. First, we’ll use 
feature typicality to refer to the idea that a 
category is typical of its superordinate to the 
extent that they simply share features, without 
regard to reasons why both have those fea-
tures. This is the kind of typicality employed 
in Osherson et al’s similarity-coverage model 
(1990) and the connectionist feature overlap 
model (Sloman, 1993). 

The other notion of typicality we’ll evaluate 
explicitly considers explanatory structure as a 
determiner of causality. In this account, robins 
are not typical birds because they have bird 
features, they are typical birds explicitly be-
cause they got their bird features in the right 
way (see Sloman, 1994). On this kind of typi-
cality, which we’ll call causal typicality, a 
subordinate is typical of its superordinate to 

the extent that it shares features with the su-
perordinate, and that it shares those features 
either in virtue of being a member of its cate-
gory, or for the same reasons that apply to the 
superordinate category. We report results using 
the former: typical features of category mem-
bers are those explained in terms of the su-
perordinate category. Kemp and Tenenbaum 
(2009) come close to this approach when they 
assume that a category features result from a 
generating mechanism common to both super- 
and sub-ordinates.  

ERIC is capable of representing both these 
kinds of typicality, and attributes to them dif-
ferent kinds of effects on inductions from a 
category to its superordinate. To examine these 
differential effects, we constructed four “bird” 
subtypes: “eagle”, “sparrow”, “blue heron”, 
and “penguin”. The bird category was given 
four features (i.e., generic unary predicates 
were added to knowledge of the form Xi(bird)), 
and also made a subtype of animal (and the 
taxonomic animal knowledge was included on 
all typicality tests). The feature overlap of the 
subcategories was as follows: sparrow had all 
of the bird features, and no additional features.  
Blue heron had two of the four bird proper-
ties, and no additional properties. Eagle, like 
sparrow, had all four bird properties, but also 
had two additional idiosyncratic properties. 
Finally, penguin had only one typical bird 
feature, and had three additional idiosyncratic 
features. Thus, both penguin and sparrow 
have four features, and vary only in the typi-
cality of those features. Blue heron, sparrow, 
and eagle show the relationship between num-
ber of features and typicality.   

To examine causal typicality, we used the 
same feature knowledge set, but added to 
knowledge simple explanations of the source 
or justification of each feature. The explana-
tions in this set were all taxonomic, e.g., 
isa(eagle, bird), sings(bird) ⇒ sings(eagle). 
For the idiosyncratic features of eagle and 
penguin, alternative super-ordinates were cre-
ated (e.g., isa(penguin, polar_animal), 
lives_on_ice(polar_animal)⇒lives_on_ice(pe
nguin)). All typical features were explained 
with reference to the bird category.   
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Figure 5: Inductive strength of a blank property to 
bird, from premise categories of varying typicality 

 
Results are displayed in Figure 5. Consider 

first the explanatory knowledge base: this base 
matches the empirical finding that more typical 
members more strongly support inductions to 
the superordinate (Osherson et al, 1990; Rips, 
1975): penguin only very poorly licenses in-
ferences about birds in general. Sparrow—the 
most typical category member—appropriately 
licenses induction to bird best. We can see 
importance of the linking explanations, how-
ever, when we turn to the feature-based 
knowledge set. Here the blue heron category 
generalizes best, and penguin is only slightly 
behind eagle. This happens for the reason we 
highlighted earlier: extra knowledge about a 
category decreases its projectability, all else 
being equal. The knowledge pattern on which 
taxonomic reasoning is based in the features-
only knowledge set is restricted to a very sim-
ple, general pattern: isa(x,y), f(y) ⇒ f(x). Since 
Blue Heron has fewer features than Sparrow, 
this rule projects better onto it, leading to the 
reversal in the first two groups.  Thus, without 
linking explanations, extra features block the 
application of general knowledge, even when 
the premise and conclusion category tend to 
share features. It would seem that ERIC re-
quires linking explanations to match empirical 
demonstrations of typicality. 
 
 

Number and Diversity of premise categories 
 
One of the more controversial properties of 
property inductions concerns how the number 
and diversity of premise categories affects the 
strength of an induction. In general, it appears 
that the more premise categories are given to 
have a property, the more strongly that prop-
erty will be extended to categories unrelated to 
the premises (Osherson, 1990; Nisbet, 1983). 
Furthermore, in such cases, the more diverse 
the premises, the more powerful the argument, 
at least for certain reasoners in appropriate 
domains (Osherson, 1990; López, 1997). 
Osherson et al. observed what they called 
nonmontonicity effects. For example, an argu-
ment from flies having a property to bees hav-
ing it was judged as stronger than an argument 
from flies and orangutans to bees (see also 
Sloman, 1993). The absence of diversity-based 
reasoning has frequently been observed when 
reasoners have rich causal knowledge about 
the content domain (López et al, 1997; Medin 
et al, 2002). 

The role of rich causal knowledge in expla-
nation will be discussed shortly. First, we con-
sider more traditional cases of diversity and its 
exceptions. As shown in Figure 6, in general a 
larger number of premises increases ERIC’s 
estimate of the power of an argument, and 
more diverse premises are beneficial over 
similar premises. However, this pattern inter-
acts strongly with the relationship between the 
premises and the conclusion. When one prem-
ise is similar to the conclusion, arguments are 
little benefited by additional, less similar 
premises. Although the model shows a de-
creased benefit in these cases, under its current 
formulation it did not produce the reversal of 
diversity found in human judgments.   

A final feature of property inductions is that 
the property being extended (more precisely, 
the reasoner’s knowledge about the property) 
substantially affects inductions made. To simu-
late this fact, we created knowledge corre-
sponding to the taxonomic and predatory struc-
tures explored by Shafto et al (2008). 
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Figure 6: Inductive strength of a blank property 
based on the number, similarity, and diversity of 

premise categories. 
 

Property induction in knowledge-rich contexts 
 
Beyond the predatory and taxonomic knowl-
edge, we provided basic background knowl-
edge about two properties. One property was 
identified as “having a particular bone”, by 
having five features common to a generic 
“body parts” category. Knowledge about prop-
erty distribution was restricted to a single gen-
eral statement that body parts of super-
ordinates are often shared with subordinate 
types. The second property was identified as a 
“disease”, by having five features common to a 
generic. Explanatory knowledge about dis-
eases consisted of a general transmission-
based case. Both diseases and body parts were 
identified as kinds of properties, and as single 
general fact about properties stated that they 
are often shared from super-ordinates to sub-
ordinates. Then, for each pair of animals, each 
property was generalized from each member of 
the pair to the other. Results are presented in 
Figure 7. 
Induction on having a particular bone was al-
ways primarily taxonomic. Explanations in-
volving eating occurred (remember that all 
conceivable explanations are generated) but 
were accorded very low strengths.  On the 
other hand, induction over disease susceptibil-
ity was more complex: when predation rela-
tions went from premise to query, inductions 
were strong and the strongest explanations 
tended to be in terms of predation. 
 

 
Figure 7: Dependency of inductive strength on 

property and category relationships.  
 
When predation relations went from query to 
premise, inductions were generally weaker and 
the strongest explanations were frequently 
taxonomic. Similarly, when predation relations 
did not connect the premise to the query, gen-
eralizations were primarily taxonomic.  These 
patterns are quite similar to those found to ob-
tain in human judgments (Shafto et al, 2008), 
and demonstrate the power of ERIC to adjust 
its application of “rules” over different do-
mains of its knowledge. 

Because ERIC “knows” only two reasons 
why a creature would get a disease (taxonomic 
similarity to another creature that is suscepti-
ble, and transmission through eating), when 
simply asked to explain why a predator gets a 
disease, ERIC forms the hypothesis that per-
haps its prey gets the disease. Also, notice that 
both properties degrade taxonomically.  This is 
because both kinds of knowledge are in the 
system, and so both affect, to some degree, the 
same judgments.  The model predicts that peo-
ple will also blend different theories and do-
mains of knowledge when making inductions.   

 
DISCUSSION 

ERIC uses a probabilistic logic to encode the 
intuitions that knowledge-driven explanations 
are generated in support of property induc-
tions, and that novel explanations are gener-
ated via analogical adaptation from nearby 
cases.  We demonstrated that, using these in-
tuitions, ERIC is capable of capturing many 
known phenomena in property inductions, in-
cluding the specific role of knowledge about 
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property distributions (e.g., predator-prey rela-
tions versus taxonomic distance relations).   

Compared to other analogical inference sys-
tems, ERIC is distinctive in eschewing com-
plex analogies between large schematic struc-
tures.  Instead, ERIC builds explanations 
through many, smaller analogies between ana-
logs often consisting of just two or three 
propositions.  While ERIC’s complete lack of 
large-scale structure surely reflects a simplifi-
cation, postulating analogical extension as an 
implementation of symbolic inference suggests 
that many, if not most, analogies are of just 
this sort. 

ERIC occupies a space quite close to a re-
cent model by Kemp and Tenenbaum (2009). 
Their model makes property inductions in two 
steps: first information about a domain is used 
to construct a functional form for the distribu-
tion of properties across the domain; second 
that function is used to generate prior prob-
abilities for the property distribution. These 
priors (after the usual application of probabil-
ity theory using given premises as data) pro-
duce induction strengths. We are also using 
domain knowledge to predict estimates of in-
duction strength, and assuming that different 
knowledge about property distributions is re-
sponsible for differential inductions.  

Kemp and Tenenbaum’s model postulates 
that individual features or characteristics are 
used to produce domain-scale property distri-
bution functions, and these functions are re-
sponsible for producing induction estimates. 
The problem of relevance—of deciding which 
properties or features should be used to con-
struct the domain theory—is sidestepped, and 
the authors focus on evaluating whether the 
use of premises to bias estimates based on 
well-constructed domain theories can produce 
human-like responses (and they demonstrate 
quite effectively that it can).   

Our approach, in contrast, assumes that the 
extension of properties is based on the conflu-
ence of local, relevant properties, and that in-
dividual properties are extended on the basis of 
families of arguments. This set of assumptions 
allows the application of analogical reasoning, 
and the construction of individual explanations 

of particular extensions. Implicitly, the knowl-
edge in ERIC constrains estimates of the prob-
ability of different property distributions, and 
it does so in domain-dependent ways.  How-
ever, rather than constructing those distribution 
probabilities explicitly, as in Kemp and 
Tenenbaum’s model, ERIC uses knowledge 
directly to generate estimates.  Our hope is to 
account for some of the ways people decide 
what knowledge to use in the service of induc-
tions. 

 
Limitations  

 
ERIC leaves much undone. First, at this 

point it will not make arguments against hy-
potheses.  Generally, this means that probabili-
ties rise and do not fall. Worse, because there 
is only one probability value associated with 
any statement, the model has no way to assert 
that a fact is certain to be false, even if it might 
be explained somehow.   

Another fundamental feature of real expla-
nations beyond the scope of the current model-
ing effort is the role the purposes and target 
audience play in constraining the form and 
content of explanations (Van Fraessen, 1980; 
Chin-Parker & Bradner, 2008).   

Despite these limitations, ERIC does suc-
cessfully apply fundamental intuitions from 
theory-theory and analogical reasoning litera-
tures.  From the former comes the idea that 
explanations of known or given facts are re-
sponsible for property induction evaluations.  
From the latter comes the intuition that reason-
ing often derives from analogies to similar 
situations.  ERIC comprises one attempt to 
instantiate these theoretical ideas in a formal 
framework, and demonstrates that such a for-
malization can capture much of what we know 
about property inductions. 
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