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Abstract. Papers on diagrammatic reasoning often begin by dividing marks on 
paper into two basic classes: diagrams and sentences. While endorsing the 
perspective that a reasoning episode can be diagrammatic or sentential, I will 
give an overview of recent evidence suggesting that apparently symbolic 
expressions in algebra and arithmetic are frequently treated as diagrammatic or 
even pictorial depictions of objects and events—events that occur not in the 
content of the expression, but within the notation itself. This evidence suggests 
that algebra is sometimes less a matter of rules and abstract syntax, and more a 
matter of constraints on the physical behavior and part-whole structure of 
notational things: an idiosyncratic notational physics, whose laws constrain the 
structure of proofs. These considerations suggest that whether some marks are a 
diagram depends on exactly how a user engages them. 
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1 Introduction 

Our understanding of diagrams often begins from a division of external 
representation schemes into diagrams and sentences [1,2]. Pictures, blueprints, and 
maps serve as prototypes of diagrams; the default sentential representation is spoken 
language. Although modern mathematical expressions superficially resemble 
quintessential diagrams in that they are typically set off in their own physical space, 
and use two-dimensional physical space (e.g., in subscripts and superscripts), 
expressions exhibit many properties typical to sentential schemes. The central 
contention of this paper is that mathematical forms can be profitably viewed both as 
sentences and diagrams, depending on how they are used to support reasoning. 

It is widely agreed that the content domain of a representation scheme does not 
determine whether or not it is diagrammatic. As an example, statements of 
propositional logic may be expressed either with words or with Euler diagrams. A 
more common perspective is that the relationship between form and content fixes the 
status of a representation scheme [1,2]. On these accounts, diagrams depict content-
level relationships through a homomorphism to physical structures. In sentential 
systems, physical relationships such as ordering may have a homomorphic 
relationship to the abstract grammatical structure of a proposition, but not to meaning 
in the depicted content. Whether a system is sentential or diagrammatic has entirely to 



do with the system’s relationship to its intended content; the user of the system does 
not contribute to the distinction.  

In this paper, I suggest that categorizing representations in this way glosses the 
actual psychological processes employed by reasoners in solving problems. In 
particular, in some cases reasoners treat an external representation as though it was 
depicting something that it normatively isn’t. This paper provides an overview of 
recent evidence collected by myself and others, demonstrating that low-level 
perceptual features of mathematical expressions have a substantial impact on 
reasoning. Previously, I have argued that reasoning with notations involves the 
development of specialized perceptual mechanisms [3,4].  Here, I develop an 
alternative interpretation (see also [5]): Learning mathematical rules involves learning 
a kind of commonsense physics—the physics of mathematical objects. That is, people 
often apply to mathematical forms reasoning processes which they typically apply to 
physical objects undergoing various kinds of change and motion. On this latter 
interpretation, although there is no homomorphism between the form of a 
mathematical expression and its normative content, there is an iconic relationship 
between the surface form of an expression and the representation of symbols as 
physical objects.  The result is a diagrammatic relationship between the physical 
structure of an expression, and the expression as conceived by the reasoner. 

2 Mathematical Expressions as Physical Objects  

People know a lot about physical objects. We have a fairly good understanding of 
how objects move, collide, bend, and break [6]. We also have rich mechanisms for 
recognizing object boundaries—segmenting visual scenes into objects and their parts.  

Infants exhibit knowledge of and interest in the way that objects move, change, 
appear, and vanish [7-9]. As children explore their environments, they also develop an 
understanding of which features cue object boundaries [7,10]. By the time they are 
adults, human reasoners have a rich and developed ontology of different object types, 
with different kinds of properties. In the same manner that children may initially 
apply general principles of object segmentation and motion, and over time learn 
appropriate particular rules for particular kinds of objects [7,8], reasoners learning 
mathematical systems may adapt general segmentation and dynamic event processes 
to suit the structure of mathematical expressions. Causally potent experience with 
objects and affordances shapes children’s understanding of specialized situations and 
objects [8-10]; in a similar manner, causally potent experience with mathematical 
computations may lead to the incorporation into general physical understandings of 
constraints particularly suitable to mathematics. 

At the very least, people occasionally talk about notations as though they were 
objects: in Britain, for instance, improper fractions such as 

€ 

17
5  are often called “top 

heavy,” suggesting a metaphor to an object standing upright in gravity. Talk of 
equations as “balanced” suggests similar implicitly gravitational considerations. 
People often talk of equation solution in terms of motion. Pilot work in my lab found 
that when asked to describe how to solve generic linear equations, approximately 10-
15% of subjects spontaneously described the process of isolating the variable being 



solved for by using the word “move," and an additional 10% used language 
suggesting motion. If such descriptions are not purely metaphorical, but indicate 
processes used in actual online computation, one straightforward hypothesis is that by 
and large, physical models of mathematics map symbols into material forms by using 
object segmentation to implement grammatical rules, and understand axioms using 
representation systems  which apply to dynamic events.  

2.1 Material approaches to formal grammars 

What are the objects that populate the world of algebraic notations? A natural 
guess is that the structural part-whole segmentation mirrors the formal grammar: 
objects are expressions, whose parts are connectives and sub-expressions. For 
example, the expression 

€ 

9 + 6 × 7  is one object, made up of three parts: 

€ 

9, 

€ 

+ , and 

€ 

6 × 7. The last part is then itself a compound object, made up of 

€ 

6, 

€ 

× , and 

€ 

7 .  
Visual grouping principles require very little training to account for mathematical 

behaviors. This is because the visual structure of algebraic notations already largely 
aligns spatial and syntactic proximity[11]. For example, consider the expression  

The division sign forms a vertical barrier paralleling the syntactic separation into 
numerator and denominator. Parentheses form a perceptual region, visually grouping 
the terms within. The overbar in the radical also creates a visually connected region 
(and is itself the vestige of an obsolete grouping system [12]). Exponents are placed 
very close to their bases, and omission of the multiplication sign causes products to be 
spaced more closely than sums. However, some mathematically meaningful segments 
are not handled appropriately by domain-general grouping principles. In order to 
correctly group simple arithmetic expressions in uniformly spaced typefaces, such as 

€ 

3+ 5 × 4 = 23, it is necessary to visually group terms surrounding multiplications 
preferentially over additions, and those preferentially over equals signs.  

An amodal account of expression parsing that relies strictly on rules expressed 
formally to determine structure provides no particular predictions about the physical 
requirements of a mathematical system, beyond that the symbols be clearly readable, 
and close enough that the next symbol can be seen before the previous one is 
forgotten [13]. However, if the implementation of the rules of interpretation 
comprises learning idiosyncratic grouping and segmentation principles layered over 
the usual grouping processes that apply to physical scenes, then a basic biconditional 
prediction follows: physical features that affect object segmentation should influence 
the computation of formal syntax, and physical features that influence formal syntax 
should influence segmentation.  

 

€ 

3x 2 +
x + 4 + 7x
(3+ y)x

 . 
(1) 



 

Fig. 1. Sample stimuli from Landy & Goldstone [3] illustrating the effect of (from top to 
bottom) physical space, common region, connectedness, and alphabetic proximity. In each 
case, participants were biased to see visually grouped objects as syntactically bound. 

Substantial evidence supports the former of these two conclusions. Kirshner [11] 
demonstrated that students learning a novel arithmetic notation incorporated spatial 
proximity into syntactic operations. Subjects were better able to respect the order of 
operations while performing arithmetic expressions, when the novel notation 
contained spatial proximity relations similar to that of typical algebraic expressions 
(that is, when higher precedence operations were closer). Landy & Goldstone [3]  
demonstrated that the effect was not limited either to spacing, or to features present in 
standard notations. A wide variety of grouping principles affect both perceptual 
grouping and mathematical competence (see Figure 1).  

The implication that mathematical relations should influence spatial perception and 
grouping of mathematically relevant objects is relatively unexplored (though see 
[14]). The conceptualization of formal learning presented here makes emphatically 
the prediction that learning syntax should affect object segmentation. 

2.2 Mathematical Rules as Constraints on Physical Change 

Once one has found the objects, one must understand how they behave. To be useful, 
the laws of dynamics must, of course, by and large guarantee mathematically valid 
results. Many valid manipulations can be accomplished by assuming that expressions 
are semi-rigid physical forms, with parts that move continuously and that can be 
created and destroyed in specific kinds of ways and circumstances.  

Let’s consider two ways to solve linear equations, one using a sentential approach, 
the other a material. Table 1 presents one derivation of the solution to 

€ 

y × 3+ 2 = 8, 
using Euclid’s axioms. These axioms specify a family of equations—including each 
of the equations in Table 1—that have the same solution. The key to this method is to 
apply the rules to find a member of the family whose answer is obvious.  

The sentential approach treats the derivation as a sequence of separate statements 
from the same set (in the case of linear equations, equations with a fixed solution). A 
short proof or derivation is similar to a paragraph: it is a sequence of separate  



Table 1. A sentential approach to equation solving.  

statements that follow closely upon each other, but which consist themselves of 
wholly separate words and phrases. Each sentence is a separate thing. 

Alternatively, one can see the proof structure as a narrative of transformation, in 
which one or a few physical objects undergo a succession of alterations. Consider the 
proof shown in Table 2. It is identical to Table 1, except that two steps have been 
collapsed. However, the justification is quite different. Here the solver conceptualizes 
a single equation, undergoing physical transformations. It is unambiguous that there is 
a single equation, which appears in different forms in the three proof lines as a result 
of the changes it has undergone (the 2 has “moved rightward” and “changed sign”). 
Note that this is a kind of motion specific to mathematics; when an object crosses an 
equation boundary, it must transform (by changing sign).  

Consistent with the idea that people sometimes solve problems by treating 
notations as though they represented motion,  Landy & Goldstone [15] found that 
people solving linear equations were systematically affected by the simultaneous 
perception of actual motion (see Figure 2). When irrelevant dots in the background 
behind a problem moved in the same direction that the terms would be moved in the 
motion-based strategy, error rates were lower than when the dot motion was opposite 
to that implied by the equation. Furthermore, this effect grew larger with increased 
mathematical experience, and was strongest on problems that were most familiar  
(those involving addition and multiplications, rather than subtractions and divisions), 
suggesting that experience leads to increased use of motion-based conceptions in 
notations. This is consistent with the hypothesis that situated experience with the 
physical contingencies of mathematical proofs drives the construction, in reasoners, 

Table 2. A material approach to equation solving.  

Statement Justification 

€ 

y × 3+ 2 = 8  Given 

€ 

y × 3+ 2 − 2 = 8 − 2 Apply Axiom of addition 

€ 

y × 3 = 8 − 2  Arithmetic Simplification 

€ 

y × 3
3

=
8 − 2
3

 
Apply axiom of division 

€ 

y =
8 − 2
3

 
Arithmetic simplification 

Statement Justification 

€ 

y × 3+ 2 = 8  Given 

€ 

y × 3 = 8 − 2  Move 2 rightward (and change sign) 

€ 

y =
8 − 2
3

 
Move 3 rightward (and change sign) 



 

Fig. 2. Sample stimulus from [15]. In the stimulus dots moved quasi-randomly. For this 
problem, compatible motion is leftward motion; incompatible motion is rightward. 

of physical representations of formal systems. 
Although we initially described Table 1 using an sentential approach, there is also 

a readily available material interpretation. Rather than seeing the lines as separate 
statements, with derivational links justified by the application of rules (the most 
formally sound perspective), one can see the lines of the proof as dynamic events 
happening, again, to a single object. In this case, the events would not be motion 
events, but instead involve creation and destruction of terms. So between lines three 
and four of Table 1, a “divided by 3” is introduced on both sides of the equation. This 
language mirrors the usual justification for the axiom itself (“likes done to likes yield 
likes”); however, in the material approach, the introduced term is not semantically de-
referenced. We do not take away two-thirds of each of two piles of stones; we instead 
insert a pair of symbols “/3.” Thus, the justification is intrinsically tied to the notation 
display, rather than to an underlying situation model. Although I know of no direct 
evidence that people in fact engage in this kind of symbolic-material reification, the 
material approach predicts that people do. This approach therefore suggests particular 
phenomena. For instance, semantic and visual facts that prime creation and 
cancellation should encourage corresponding computational processes and vice versa. 

3 Discussion 

So what kind of representations are mathematical expressions?  When taken to be 
representations of underlying situations or abstract facts, an abstract syntax mediates 
physical form and meaning. At least some of the time, however, it appears that the 
actual mechanisms involved in notation manipulation treat notations as though they 
were literal depictions of physical objects. In these cases, the physical properties of 
expressions are iconic representations of literal physical objects, and are therefore 
quintessentially diagrammatic rather than sentential. These considerations suggest a 
dual treatment of mathematical forms. As depictions of objects, forms can be 
segmented, manipulated, created, destroyed, and simply observed. As referential 



symbol tokens, forms can be unpacked into general, meaningful statements. Together, 
these two systems yield powerful, domain-general syntactic computation.  

Not every sentential representation is pictorial in the sense discussed here. The 
physical interpretation of formal languages makes them different from written natural 
language. Although proximity may well play a role in sentential understanding, there 
is no reason to suspect that dynamic transformations of notations play a significant 
role in sentence understanding. The dual interpretability of mathematical systems may 
constitute a basic virtue of our modern symbolic systems.  

All of this can be summarized as a fairly trivial point about diagrams: diagrams 
often work by letting one kind of thinking you’re good at stand in for a another kind 
of thinking you’re bad at, as when Venn diagrams allow one to come to conclusions 
about set relations by thinking about spatial relations. Similarly, mathematical 
expressions written in our modern notation often let you come to conclusions about 
formal statements and proofs by thinking, instead, about objects in space.  
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