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Abstract 

Two experiments test predictions of a visual process-driven 
model of multi-term arithmetic computation.  The visual 
process model predicts that attention should be drawn toward 
multiplication signs more readily than toward plus signs, and 
that narrow spaces should draw gaze comparably to 
multiplication signs.  Although both of these predictions are 
verified by behavioral response measures and eye-tracking, 
the visual process model cannot account for patterns of early 
looking.  The results suggest that people strategically deploy 
visual computation strategies. 
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Introduction 
 
Although mathematics is often described as a universal 
language, and the concepts involved in mathematics can be 
expressed in many different ways without altering their 
meaning, actual mathematical statements are almost always 
written using one highly specialized notation (Arabic 
numerals together with symbols like +, x, ÷ and =).  
Learning this notation is a difficult task (Nathan, Alibali & 
Koedinger, 2004), and failures to understand the formal 
notation are not always easy to distinguish from conceptual 
misunderstandings.  Since processing symbols via formal 
rules is central to cognition, understanding how people learn 
to use mathematical notation promises to shed light on the 
fundamental structures that implement human reasoning.  

It may appear at first glance that formal notation is simply 
a symbolic shorthand.  For instance,   1+ 1 = 2  may be read ad 
verbum as “one plus one equals two”.  However, formal 
notation also involves idiosyncratic rules for interpreting 
particular kinds of structures.  For instance, it is not clear 
without instruction how to read such non-linear expressions 
as summations with upper and lower bonds. Even within 
purely linear examples, formal notation involves 
idiosyncratic interpretive rules. The English-language 
phrase “two plus two times five”, for example, might mean 
“twelve” or “twenty”, the formal expression   2 + 2 × 5  refers 
uniquely to 12, because of an “order of operations” rule 
which specifies that multiplications are resolved before 
additions.  These rules are not part of the conceptual 
structure of mathematics, nor are they contained in the 
meaning of the operations.  Instead, they are idiosyncratic 
parts of the common mathematical symbology, which must 
be mastered by learners.  

One might posit that these processes of intepretation, like 
the concepts of mathematics, are mentally represented as 
rules.  These rules are applied by a post-perceptual parsing 
process which turns the linear, string-based representation 
into a hierarchical mental representation, suitable for 
computation (Keodinger & MacLaren, 1998).  The idea 
explored here is that, instead, evaluation of mathematical 
expressions typically follows a very different course: we 
suggest that mathematical interpretation is accomplished via 
mechanisms of attentional control and gaze direction on 
literal expressions.  On this view, formal notations are far 
more than a symbolic shorthand—they are physical systems 
which have become very well-suited to the human 
perceptual structures, so that what is mathematically correct 
will be perceptually natural.  Seen this way, mathematical 
reasoning is a form of extended cognition (Clark, 2007), 
where correct formal behavior results not from a mentally 
representated rule, but from the interaction of typical bodily 
engagement and the constructed external environment. 

The major focus of this paper will be to explore one  
particular manifestation of the embodied approach to formal 
syntax parsing, which we will call the salience model of 
simple arithmetic, or just the salience model.  One 
computational instantiation of this model appears in Landy 
(2007), but the idea is relatively general.  In broad terms the 
salience model posits that single-operation arithmetic 
computation occurs largely automatically when a person 
attends to a particular sub-problem, at a rate that combines 
the difficulty of that problem (for instance, divisions and 
multiplications would tend to take longer than additions of 
equally sized operands) with the visual regularity of that 
problem.  This latter criterion suggests that, for instance,  
 8 × 3 would be a less regular instance of “eight times 
three” than would  8 × 3.  Similarly, in   9 + 2 + 6, the left 
sub-problem would form a better group than the right 
because the 9 and 2 are physically closer than the 2 and 6.  
The salience model also assumes that multiplications form 
better groups than do additions, and therefore that 
multiplications should be more salient than additions.  
Activity proceeds, in the implementation described in Landy 
(2007), because once a sub-problem is solved, it is visually 
inhibited, and the result visually imagined in its place. 

In the salience model, multiplications should be 
privileged not just in mathematical or computational 
contexts, but whenever multiplications and additions are 
competing for attention.  This prediction is tested in 
Experiment 1.  Moreover, multiplication signs and spatial 



proximity act in the same way, drawing attention and 
processing power to an item, and facilitating its solution. In 
the context of simple arithmetic problems over addition and 
multiplication, this implies that problems in which 
multiplications are more narrowly spaced than additions 
should be easier to solve than the reverse, which has 
previously been reported (Kirshner, 1989; Landy & 
Goldstone, 2007A); hence, we will refer to such problems as 
“consistent”, as opposed to “neutral” (with uniform spacing) 
or “inconsistent” (additions more narrowly spaced than 
multiplication) problems.  It also implies that both 
multiplications and narrowly spaced problems should draw 
attentional resources more strongly than additions and 
widely spaced problems.  This hypothesis is tested in 
Experiment 2, which uses gaze position and fixation 
duration as estimates of attentional resources.  Several prior 
studies of eye-movement in arithmetic have been 
performed. These studies, however, have tended to look at 
vertically arranged stimuli with a single operation type 
(Suppes, 1990), or to use regular stimuli, where looking 
patterns do not need to vary (Salvucci 1998), and none to 
our knowledge explores the role of spacing in computation.   

The salience model can be usefully contrasted with a 
default serial model. Any plausible serial model of 
arithmetic, for instance, should assume that multiplications 
are evaluated before additions, and therefore that attention 
(and gaze) will be focused on multiplications early in trials, 
and on additions later.  Such a model makes no predictions 
about how people will treat narrowly- or widely- spaced 
sub-problems, however, and furthermore provides little 
reason to suppose that attention would be drawn more 
rapidly to multiplications than to additions prior to encoding 
the problem.  In the salience model, by contrast, attention 
should immediately tend toward narrow spaces and 
multiplications. The default serial model is not attributable 
to any particular researcher, nor do we mean to suggest that 
it is generally tacitly assumed.  The intended role of the 
default serial model is not as a straw man but as a baseline. 

Experiment 1: Attentional Features of  ⋅ ,  × 

Method 
Forty-eight Indiana University undergraduates received 
partial course credit for participation. Three participants 
were removed for failing to reach a criterion of 80% overall 
accuracy.  Including these participants did not affect the 
significance or pattern of results. 

All stimuli consisted of valid mathematical expressions 
with one addition and one multiplication operation. The 
three operands were single digits between 2 and 9, and were 
printed in the LeHei Pro font on Macintosh computers. The 
plus sign was a simple vertically and horizontally symmetric 
+.  For 19 participants in the “cross” condition, the 
multiplication sign was a   ×; the remaining 26 participants 
in the “dot” condition saw a  ⋅used for multiplication.  The 
cross sign was identical to the plus sign, but was rotated 45° 

All of the operand symbols were 14mm across; operands 
were separated by 50mm. 

Participants were instructed to press a button 
corresponding to the side of the expression on which a 
target sign appeared. The target sign alternated between the 
addition sign and the multiplication sign in blocks of 20 
trials.  

Results 
Accurate-trial response times are summarized in Table 1. 
Participants responded more quickly when identifying 
multiplication signs than addition signs (F(1,43)=12.4, 
p<=.01); this difference was also significant within each 
symbol condition.  Further, there was also a main effect of 
symbol condition: participants responded more quickly in 
the dot than the cross condition (F(1,43)=85, p<.001).  
There was no significant interaction between task and 
symbol condition (F(1,43)=1.45, p~.23). 
 

Table 1: Response time (and accuracy) in Experiment 1 
 

Condition Task 
 Addition Multiplication 
Cross 947±19ms 

(.95±.01) 
916±18ms 
(.98±.01) 

Dot 714±17ms 
(.93±.03) 

698±19ms 
(.97±.02) 

 

Discussion 
As predicted by the salience model, people tend to respond 
more quickly when searching for multiplications than when 
searching for additions.  Note, however, that the salience 
model does not provide an account of why multiplication 
searches should be more rapid than addition searches.  It is 
possible that this is the result of long-term training on 
mathematical tasks. It is also possible that the visual 
features of the multiplication signs make them stand out 
better from numbers than do those of the addition sign. 

  Although Experiment 1 demonstrated a response bias in 
favor of the multiplication on a non-mathematical task, it 
does not demonstrate that multiplications attract attention 
more readily.  It might be that both problem types are 
equally attractive, but that responding to additions is 
generally inhibited.  Experiment 2 provides a convergent 
measure of the attractiveness of multiplications, by 
measuring eye-position during arithmetic problem-solving. 

Experiment 2: Eye-Tracking  

Method 
Participants were 13 undergraduate students from Indiana 
University, who received partial course credit for 
participation.  The experiment lasted about 50 minutes. 

Participants were shown a set of 144 simple two-operator 
arithmetic problems, and asked to compute their value and 



say the result out loud as they pressed a button signaling 
completion. Eye movements were recorded until 
participants pressed a button indicating completion.  
Participants were reminded of the order of operations before 
beginning the experiment. 

Operands ranged from in magnitude from two to nine; the 
operations were addition or multiplication. Thus, problems 
could have the operator structure plus-plus, times-times, 
times-plus, or plus-times.  Each was shown equally often.   

Each problem was displayed twice, once each in two of 
four possible spacing conditions: In the narrow-wide or NW 
condition, the left operation was more narrowly spaced than 
the right, as in 2*3  +  4; in the wide-narrow or WN 
condition, the reverse was true, as in 2  *  3+4.  In the wide-
wide  or WW condition, both terms were widely spaced, and 
finally in the narrow-narrow or NN condition, both 
operators were narrowly spaced.  Problems were presented 
equally often in each spacing condition and operator group.  

Each operand and operator was 16mm wide.  Narrowly 
spaced operands were placed  31mm apart; widely spaced 
operands were placed 101mm apart.  In both cases, 
operators were placed equidistant from each operator. Eye 
positions were recorded with an Eyelink 1000/2K Desktop 
Mount System from SR Research running at a temporal 
resolution of 250Hz.  We used monocular tracking locked to 
the participant’s right eye only.  Each stimulus display 
subtended a maximal visual angle of  23 degrees. 

 
Measuring Gaze Position In considering gaze position, we 
are more concerned with the horizontal than the vertical 
position.  However, there are two plausible ways to measure 
horizontal position.  We might measure the distance from 
the expression center, that is, the midpoint between the two 
outer operands.  Alternatively, we might measure the 
displacement of gaze to the right or left of the central term 
(see Figure 1).  When expressions are uniformly spaced, 
these two measures coincide, but when the expression is 
either in the narrow-wide or wide-narrow condition, the 
measures differ.  Neither measure is perfect: for this report, 
we shall measure displacement from the central term when 
the mathematical algorithm is being investigated, and use 
deviation from the expression midpoint when marking the 
effect upon gaze of some dependent manipulation.  This is a 
reasonable choice because displacement from the central 
term determines which sub-problem is fixated, but the 
expression midpoint constitutes a natural zero-point for 
overall gaze-direction. Most reported contrasts are 
unaffected by using the alternate measure, and all patterns 
are qualitatively similar. 

In this study, we used three measures of eye-movements: 
total gaze time during a portion of the trial, mean fixation 
duration, and horizontal position of gaze.  The first two of 
these provide a measure of processing.  Longer fixations 
have been associated with more difficult or more conceptual 
material, while time allocated to an area may generally 
correspond to a center of attention.   

Because the most distinctive predictions of the salience 
model involve initial looking patterns, we performed a 
separate analysis of the first fixation after the pre-trial cue.   

Results 
Overall Performance Participants were quite accurate on 
these simple problems; mean accuracy over all trials was 
93.8%.  Participants timed out on 2.2% of trials.  These 
trials were removed from all analyses.  After removing these 
trials, median RT was 2,890ms.  The median number of 
fixations per problem was 9. 

First looks tended to be directed slightly left of the center 
of the expression (mean displacement from expression 
center:  −13.4 ± 3mm, where the negative denotes that the 
mean was left of center), which on uniformly spaced trials 
was nearest the middle operand.  

 
Effect of Consistency on Performance The small number 
of subjects limits the conclusions that can be drawn about 
the relationship between consistency and accuracy and 
response time, but the trends are substantially compatible 
with those reported in Landy and Goldstone (2007A).  Items 
tended to be solved both more accurately and more quickly 
in the more consistent format (2701ms vs 2838ms), but 
neither difference was significant (Accuracy: Mean = 94.7% 
vs. 89.7%; F(1,12)=1.32, p~.27; Response Time: Mean = 
2701ms vs. 2838ms; F(1,12)=4.0, p~.07).    

 
Overall looking patterns Figure 2 shows overall looking 
across the fraction of the trial completed for times-plus and 
plus-times trials (plus-plus and times-times trials look very  
similar to times-plus trials).  Figure 2 is quite compatible 
with the baseline expectation that people tend to solve sub-
problems serially: they do the multiplication in the first half 

 

 
Figure 1: Two different ways of measuring horizontal gaze
displacement, for the same fixation.  In the top image,
displacement is measured from the spatial midpoint of the
problem.  In the bottom, it is measured by displacement from 
the structural middle.  The sign of the latter measure
corresponds to the sub-problem being fixated.



of the trial, and the addition in the second half.  For this 
reason, analyses of overall gaze duration split the  trial into 
two halves, and sum the gaze time over each half. 

Separate analyses of variance (ANOVAs) of trials in 
which the sub-problems differed (times-plus and plus-times 
problems) were performed to evaluate total gaze toward 
multiplications and the duration of individual fixations at 
multiplications.  In the former, trial half and fixation target 
served as dependent measures; in the latter, time of fixation 
was used as a continuous measure.  Because the results were 
identical, the descriptions are collapsed. 

These analyses revealed that while there was an expected 
interaction between sub-problem fixated and gaze (see 
Table 2; F(1,12)=19.5, p<.001 for total gaze, F(1,12)=8.5, 
p<.05 for individual fixations.), there was no significant 
difference by either measure between total duration of gaze 
at additions and multiplications (Gaze: F(1,12)=1.18, p~.3; 
Fixation: F(1,12)=1.4, p~.27). 

A separate pair of analyses was performed on all fixations 
that differed in spacing, to explore the relationship between  
spacing and total looking time over the course of the trial. 
Again, time of look was binned over trial half for total gaze. 
As predicted by the salience model, the analysis revealed 
that participants spent more time overall gazing at narrowly-
spaced sub-problems than at widely spaced, and that 
individual fixations were longer (Gaze: F(1,12)=14.9, 
p<0.01; Fixations: F(1,12)=30.8, p<.001).  Also, there was a 

significant interaction between width and trial half (Gaze: 
F(1,12)=10.0, p<.01; Fixation: F(1,12)=15.0, p<.01); early 
in the trial participants fixated more strongly on narrowly 
spaced elements. 

 
First fixations. To test the prediction that eye-gaze will be 
systematically biased toward the multiplication sign, the 
mean deviation of gaze from the expression midpoint was 
computed for each participant.  These means were not 
significantly different from 0 overall (t(12)=0.14, p~.9); 
however, there was a significant effect of spacing 
uniformity on multiplication-sign looking.  When spacing 
was uniform, initial fixations were biased in the direction of 
the multiplication sign (t(12)=2.9, p<.05; see Table 4), but 
when spacing was non-uniform (i.e., when one sub-problem 
was narrowly spaced and the other widely spaced), looks 
were marginally biased in the direction of additions 
(t(12)=1.99, p~.07; the difference was also significant, 
t(12)=3.1, p=.01).  Early looks toward additions tended to 
be shorter than looks that fell inside a multiplication 
(M=28ms, t(12)=2.6, p<.05). 

A complementary analysis was performed to evaluate the 
impact of narrow spacing on gaze direction, with analogous 
results.  Overall gaze direction was not biased toward or 
away from narrow spaces (t(12)=1.2, p~.25), but within 
problems whose operators were the same (plus-plus and 
times-times trials), bias was significantly in the direction of 
narrow spaces (t(12)=4.4, p<.001, see Table 5), and within 
trials with different operator structures, gaze was 
systematically directed toward wide spaces (t(12)=3, p=.01).  
Early looks toward wide spaces were shorter than looks that 
fell inside narrow spaces, (M=54ms,  t(12)=6.0, p<.001). 

 
Eye-movements and Consistency Consistency could be 
thought of as an interaction between the effects discussed 
above, but it is simpler for expository purposes to code 
consistency separately, and analyze its effect as an 
independent property (the full 4-way analyses are 
qualitatively similar in all cases). Figure 6 displays the mean 
gaze position over the entire trial for consistent vs. 
inconsistent displays.  In this graph, in addition to a general 
tendency in both conditions to move toward the addition 
over the course of the trial, there is an evident difference in 
first glances: first glances in consistent trials fall inside the 
addition, while those in inconsistent trials fall inside the 
multiplication.  On inconsistent trials, on the other hand, 

 

Figure 2: Mean gaze position (positive is rightward) for
times-plus and plus-times problems.   

Table 2: Mean Fixation (Total Gaze) Duration (ms) as a 
function of trial and operator of target sub-problem 

 
Portion Sub-problem 
of trial Addition Multiplication 

First half 217±13 
(415±33) 

274±22 
(694±65) 

Second Half 316±20 
(697±50) 

312±29 
(560±61) 

Table 3: Mean Fixation (Total Gaze) Duration (ms) as a 
function of portion of trial and width of target sub-problem 
 

Portion Sub-problem spacing 
of trial Wide Narrow 

First half 207±15 
(405±31) 

280±29 
744±47 

Second Half 284±17 
(574±51) 

327±19 
727±42 



gaze initially fell within the multiplication, but moved 
quickly over to the addition, and then part-way back, as 
though participants were glancing toward the addition 
before computing the multiplication.  Along the same vein, 
notice that gaze is more strongly patterned in the consistent 
condition: on inconsistent trials, gaze tends to be centrally 
located throughout the trial.  (This pattern was confirmed by 
three-way ANOVAs of gaze duration and fixation duration 
over trial time, consistency, and target operator. Total gaze: 
F(1,12)=9.1, p=.01; Fixations: F(1,12=6.6, p<.05). 

Discussion 
Experiment 2 revealed significant modulation of behavior 

based on overall expression structure and physical spacing. 
People treat spaces and multiplications very similarly, as 
predicted by the salience model.  Further, people tend to 
focus on narrow spaces (and multiplications) early in a trial, 
and move toward wider spaces (and additions) toward the 
end.  Participants spent more time looking at narrowly-
spaced sub-problems, and individual fixations directed 
toward them were longer, confirming the hypothesis that 
narrowly-spaced problems draw attention (although this 
result was not replicated for multiplications).  Overall, 
Experiment 2 confirmed the prediction that narrow spacing 
and multiplications have similar effects on attention.   

The pattern of results in first fixations is more 
complicated, and less compatible with the predictions of the 
salience model.  The model predicts that gaze should be 

directed first toward multiplications and narrow spaces, but 
this turned out to be true only for stimuli in which spacing 
was uniform, and the operations were the same, 
respectively.  The hypothesis that narrowness and 
multiplication are processed similarly provides a 
simplifying interpretation of these data.  In this 
interpretation, there are two kinds of expressions (call them 
“homogeneous” and “non-homogeneous”), and they have 
preferred computation strategies. Homogenous expressions 
tend to be equally spaced, and to have identical operators.  
In these equations, people tend to focus immediately on 
high-salience elements: multiplications and narrow spaces.  
In non-homogeneous expressions—ones with different 
operators and different spacings—people tend to focus 
briefly on the lower-priority items—wide spaces and 
additions—before turning to the additions.  Spatial 
consistency, in this interpretation, is helpful not (just) 
because it helps people focus on the multiplications 
throughout the first part of the trial, but largely because it 
helps people focus quickly on the addition signs. 

This interpretation also makes the following prediction: 
despite the fact that in our formal notation, multiplications 
are more salient than additions, people should perform 
better in a system in which the high-precedence operations 
were less salient than the low-precedence. If so, then it 
seems that, in contrast to the predictions of the salience 
model, people select strategies driven by the overall 
structure of the expression, rather than following default 
biases to attend to narrow spacing and high-precedence.  
Further work will be needed to evaluate, verify, and extend 
the pattern of first fixations found here. 

General Discussion 
The results presented here were intended as a test of a 
visually-driven model of computation.  Most basically, the 
model predicted that multiplication signs would attract 
response-attention over addition signs on non-mathematical 
judgments, and this prediction was supported.  Furthermore, 
the model predicted that when evaluating arithmetic 
expressions people would treat narrowly spaced problems 
like multiplications, and this was largely supported across a 
variety of measures.  However, the model also predicted that 
people would initially look toward both narrow spaces and 
multiplications; this prediction was not supported.  In 
contrast to the predictions of Landy (2007), the pattern of 
responses is more consistent with the existence of a distinct 
pre-computation stage, in which the low-precedence 
operators must sometimes be examined directly.   

Table 5: Mean position of first looks, for trials in which 
the operators differed.   
 

Spacing Operator Structure 
Structure Times-Plus Plus-Times 

Neutral -20.3±6.3mm -6.2±8.7mm 
Non-Neutral -13.3±8.4mm -14.5±7.4mm 
 

Figure 6: Mean fixation position over trial, for consistent and
inconsistent stimuli.  Here negative denotes the high
precedence side (i.e., the side with the multiplication on it). 

 
Table 4: Mean position of first looks, for trials in which 
the spacing was not uniform. 
 

Operator Spacing Structure 
Structure Narrow-Wide Wide-Narrow 

Same -14.9±6.6mm -5.9±7.1mm 
Different -6.4±7.6mm -14.2±6.7mm 
 



One of the values of a computational model is that it 
makes specific, falsifiable predictions. The visually-driven 
model of arithmetic computation has done so. The results 
presented here seem to contradict the model of arithmetic 
processing which was their initial motivation, but they do 
not imply that visual properties are unimportant to reasoning 
with formal expressions.  On the contrary, both eye-tracking 
and behavioral measures reinforce the conclusion that visual 
properties of formal expressions play a central role in their 
interpretation, supporting the view that high-level formal 
cognition is closely tied to physical and spatial reasoning 
(Anderson et al, 2007; Landy & Goldstone, 2007; Dorfler, 
2002). 

Clearly, further work is needed to evaluate the 
relationship between operator symbols and equation 
interpretation.  The predictions of the interpretation 
presented here are difficult to test with simple two-operator 
expressions. Future work will include measuring gaze-
position on more complex compound expressions. The 
complex relationship between salience and computation 
algorithms has implications for both education and 
interface-design. 

Understanding the fine structure of the processes people 
use to parse novel arithmetic equations is valuable because 
it provides constraints on models of formal reasoning.  
Endress et al (2005; see also Pothos, 2006) argued that 
human learning of formal structures is not general, but must 
instead bootstrap itself in the perceptual processes that act 
upon representations of those structures.  The current work 
supports this perspective, by showing that even on highly 
studied formal tasks, people are affected by visual structure.  
At best, the current study illustrates how rule-guided parsing 
shares processes with spatial object perception online during 
problem solving. At the least, this research suggests that the 
mapping between operator salience, spacing, and order of 
operations, is not as straightforward as it may have appeared 
at first glance. 
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