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The computation-as-cognitionmetaphor requires that all cognitive objects
are constructed from a fixed set of basic primitives; prominent models of
cognition and perception try to provide that fixed set. Despite this effort,
however, there are no extant computational models that can actually
generate complex concepts and processes from simple and generic basic
sets, and there are good reasons to wonder whether such models may be
forthcoming. We suggest that one can have the benefits of computation-
alism without a commitment to fixed feature sets, by postulating processes
that slowly develop special-purpose feature languages, from which knowl-
edge is constructed. This provides an alternative to the fixed-model con-
ception without radical anti-representationlism. Substantial evidence
suggests that such feature development adaptation actually occurs in the
perceptual learning that accompanies category learning. Given the
existence of robust methods for novel feature creation, the assumption
of a fixed basis set of primitives as psychologically necessary is at best
premature. Methods of primitive construction include: (a) perceptual
sensitization to physical stimuli; (b) unitization and differentiation of
existing (non-psychological) stimulus elements into novel psychological
primitives, guided by the current set of features; and (c) the intelligent
selection of novel inputs, which in turn guides the automatic construction
of new primitive concepts. Modelling the grounding of concepts as
sensitivity to physical properties reframes the question of concept con-
struction from the generation of an appropriate composition of sensations,
to the tuning of detectors to appropriate circumstances.
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1. Introduction

Nearly every model of intelligent behaviour traffics in concepts on some level.
Successful models of abstract conceptual reasoning generally assume that concept

identification is accomplished prior to abstract reasoning, and thus treats concept as
unanalysed primitive tokens that can be reliably re-identified. On the other side,

work on perception often ignores the high-level purposes which the act of perceiving
is supposed to support (Marr 1982, Ullman 1984, Pylyshyn 1999).

These approaches to cognition gloss a difficult problem people face: since we
explore novel domains for which we are evolutionarily unprepared, we must develop
an understanding of the properties in terms of which a domain of knowledge
can successfully be described, and we must of course do it before we acquire a
rich understanding of the domain in question. In extreme cases like scientific
exploration, domains of knowledge are constructed in which the relevant properties
are not known by anyone prior to the construction process. In this case, the con-
struction of an appropriate vocabulary of relevant concepts is a vital part
of the cognitive task.

Consider the prominent computational model of analogical reasoning called
structure mapping theory, as implemented in the structure mapping engine (SME)
(Gentner 1983, Falkenhainer et al. 1990). In this model, analogies are typically
drawn between situations involving very abstract high-level relations like ‘revolves
around’. The detection of this (surely phenomenologically complex) property is
not dealt with, but is instead assumed to be handled by a prior system (which
may, however, be directly instructed to search for the relation in a particular
episode if an analogy reveals that such a relationship is likely). Perhaps more
important, the decision to include this particular relation in the set of relevant
properties is made beforehand, either by a designer or by an independent system.
In practical systems based on SME which need to perform concept detection (e.g.
to support a user interface), the task of identifying the concepts expressed in
physical depictions is often deliberately simplified by requiring that the user
respect a particular language of interaction (Forbus et al. 2003, 2004). The model
PHINEAS (Falkenhainer 1988) uses structure mapping to explore a novel
physical domain (heat flow) via analogies to known situations. To do so,
PHINEAS depends on a previously available language of description well
suited to qualitative descriptions of heat flow situations, but not obviously
available ahead of time for a real cognitive agent. Furthermore, not only the
description terms but also their generic similarity to analogous terms in water
flow cases, are defined ahead of time for the system (This is hardly a novel
comment: Falkenhainer specifically mentions the use of specialized feature
languages as a prominent unexplained aspect of the model, as do (Chalmers
et al. 1992).) More recently, research on the ambitious Digital Aristotle project
(Friedland et al. 2004) relies on special-purpose languages designed specifically
toward coverage of particular scientific domains. Digital Aristotle is intended to
be a domain-generic scientific tool that can suggest connections and references
between a user’s research and research from other domains or areas. This work is
still in its infancy, but in its opening stages, the Digital Aristotle relies on human-
constructed special-purpose ontologies of concepts relevant to domains under its
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coverage. While three different implementations all rely on general concepts, each
uses topically specific basic concepts in its ontology as well.

In fact, practically oriented artificial intelligence models almost always employ
special-purpose ontologies of primitive properties. Complex rules and entities are
defined in terms of these properties. Since we can presume that natural problem-
solvers are not pre-equipped with special-purpose languages for, say, chemistry labs
(though see Fodor 1975, 1992), then to the extent that these models accurately reflect
the concepts that human specialists use to understand their domains, we must
wonder where these special-purpose languages come from. While one might try
to take cognitive models to task for simply assuming feature languages which
are specially geared toward the task being modelled and thus simplifying the
real task facing a natural agent (Chalmers et al. 1992), we consider the use of
specialized feature languages to be a very revealing instance of an intelligent design
decision. The reason that models use specialized feature sets is, after all, that
they make the task of learning much easier for the artificial agent. We suspect
that in this case, art follows nature; real intelligent systems ‘cheat’ in exactly the same
way that artificial systems do, by developing small languages of primitive features
geared toward solving particular types of problems. Throughout the course of this
paper, we will use the term ‘language’ to refer to a collection of elements and
operations over those elements which act functionally as a special-purpose unit for
some specific collection of purposes. Whether any particular primitive is part of a
language may be a matter of degree, and languages need not be disjoint, but it is part
of our story that many aspects of abstract human cognition can be divided roughly
into different special-purpose languages, which behave more or less as a package.
These languages are not necessarily public or spoken, but reflect (at an appropriate
level of abstraction) the underlying cognitive processes. In particular, we are not
implying an association between these languages and natural language, but rather
characterizing these languages as something like formal computational languages.
The question that we are concerned with is whether it is reasonable to presume that
people have an underlying fixed-primitive language out of which all the other
languages are built.

Anyone who has played with LEGOTM understands the power of small, generic
building blocks with specific combinatorial rules for constructing large representa-
tive structures. The combinatorial model has had a major impact on cognitive
science and artificial intelligence over the last 40 years. The functional value, and
also the cost, of employing varying basic languages is readily apparent. Generic
languages that can express many different concepts and distinctions contain many
distinctions that are irrelevant to particular tasks. Basic sets of primitives that
are specially geared toward particular topics with more limited computational
expressibility can more readily construct the most useful discriminations. PHINEAS,
for instance, gains computational purchase on difficult problems by excluding much
of the rich detail of real novel scientific situations from consideration—without this
sort of simplification it could not practically function. In this manner, the (more or
less) exclusive use of a small, custom feature set can greatly reduce the computational
difficulty of learning a category or rule, as long as that rule can be well-discriminated
in terms of those features. The source of special-purpose languages is heavily
constrained by the assumption that cognitive operations are universally symbolic.
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Computational cognitive operations always involve the combination of a primitive
feature set into larger units (e.g. inference, or chunking methods of rule construc-
tion), so if the development of special purpose-languages is a computational
operation, it must function hierarchically over some exceedingly general-purpose
language. The dominant view thus requires that special-purpose languages are
complexes of simpler and more general psychological languages; these ‘lower-level’
properties may be implemented in terms of still simpler features, in a cascading
hierarchy of specificity, grounded in a base-level language that employs a fixed
collection of psychological primitives. Several extant research programs aim to
specify a fixed set of features which can be combined to generate all representations
of visual objects (Biederman 1987), and semantic descriptions of scenes and
sentences (Schank 1972, 1976, Schank and Kass 1988). Even if it is not specifically
stated, however, the very assumption that cognition is computation—that all
interesting cognitive activities involve the application of rules in a symbol system
(Newell and Simon 1976)—entails a fixed set of primitives, or at least demands
that any alterations to the primitive set are not cognitively interesting acts.

Despite its many merits, we believe that the computational perspective
is importantly incomplete. Complex computational reasoning need not be imple-
mented on top of a fixed set of generic primitive features. Instead, many cases of real
abstract concept learning are best viewed as involving the construction of new
psychological primitives. Concluding that cognition often combines primitive
elements into compound units is not the same as concluding that all properties, or
even all properties within a single modality or domain, are well described by a fixed
set of primitive features. One can have the many clear benefits of computationalism
without needing fixed feature sets, by postulating non-computational mechanisms
that slowly alter feature languages and, in particular, are sensitive to systems of
high-level categories, and adapt to discriminate them. The model of slowly-adapting
primitive feature languages provides an alternative to the fixed-model conception
without requiring radical anti-representationalism. Learning, we think, often
involves the construction of psychological units that were unavailable before
learning, and which transform the expressive capacities of the agent’s psychological
language. Cognitive processes like chunking alter what is tractably expressible, but
we postulate processes that alter and extend what is expressible in principle in the
cognitive language (i.e. using the basic terms and combinatorial rules) of the agent.
Understanding the role of feature-construction in the learning of perceptual
categories in controlled experiments can provide insight into the possible cognitive
role of feature-construction in more abstract cognitive domains such as scientific
and mathematical reasoning.

The task-dependent construction of expressive primitives is incompatible with the
popular view that modal perception is prior to the demands of individual tasks, and
does not depend on them. Models of low-level perception that produce scene
descriptions in terms of putatively domain-general building generally assume
either (a) that perception is independent of cognitive needs (pre-cognitive) and
constrains what is learnable or (b) that perception assumes a well-understood prior
task domain, so that the right divisions can be made in low-level perception. If we
are right, then such stories are not so much wrong in their proposed building blocks,
as simply missing a major part of the interesting story, e.g., how building blocks
like this are constructed in the first place.
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1.1. What are variable-feature languages?

To understand what we mean by feature creation, it is helpful to first analyse what

we mean by ‘feature’. By ‘feature’, we mean a psychological unit of perception or

thought. ‘Dimensions’ are similarly psychological entities, but refer to a set of values

that can be ordinally positioned. Brightness, then, is a psychological dimension only

because it is processed as a unit. If luminance energy were not psychologically

isolated then there would not be a (psychological) dimension of brightness reflecting

this physical quantity. While a strong distinction is often made between features

and dimensions, here we use the word ‘feature’ to refer to both.
Fixed-primitive methods of learning include chunking or combining primitives

(Newell 1990), inference, induction-based learning, visual imagery (as accomplished,
for example, Croft and Thagard 2001 and Davies 2004) and analogy (Mitchell 1993,
Hummel and Holyoak 1996, 1997, Kokinov and Petrov 2001). These methods all
work by compositionally combining symbolic elements. Much of the research
in associative learning and neural-networks is also reasonably regarded as fixed-
primitive, because much of that literature uses inputs and outputs which are already
functionally (and task-specifically) encoded. The network’s internal task is not then
to construct symbols that correspond to world properties, but to find appropriate
integrations of smaller languages. What these systems share is a fixed maximal
expressive capacity; no entities can be created which cannot be expressed in principle
from the underlying language. The basic set of primitives need not be small: Jerry
Fodor notoriously argued for a very large set of primitives, so that roughly each
word has a individual concept (though see Fodor 1998). Fixed primitive models,
along with computationalism, pervade the cognitive study of concepts.

The dominance of the fixed-feature approach is surely bolstered by the paucity
of alternatives. If distinctively cognitive activity comprises the application and
construction of rules, productions, and new integrations of current psychological
features into new complex terms, then the expressive capacity of a cognitive agent
is fixed regardless of the techniques used to make new elements: none of these
techniques can generate new primitive terms that were previously inexpressible in the
language. From this perspective, then, the question is not whether there is a fixed
primitive set, but which concepts are in it. Alternative viewpoints which lack this
property, such as dynamic systems theory, largely entail giving up computationalism
altogether (van Gelder 1995, Smith and Thelen 1996).

There is an answer to this ‘what else’ challenge: our alternative to fixed-primitive

languages involves not giving up computationalism, but enriching it with mechan-

isms which allow the construction of new psychological primitives that are not just

combinations of other known categories. There is significant evidence in the learning

of perceptually defined categories that indicates that novel primitive psychological

features are constructed, thereby increasing and altering the complex space of

psychologically available parsings of certain visual scenes. We think that mechan-

isms similar to those important in perceptual learning could also be very useful

in learning more abstract ‘high-level’ domains. Harnad has named the rooting of

symbolic primitives in physical world-properties ‘symbol grounding’ (Harnad 1990,

2003); his approach differs from ours primarily in that while he emphasizes a role

for symbol grounding in differentiating computational simulations from genuine

intelligence, we are interested in actual cognitive effects on the processes and capacities
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of symbolic systems. Our claim (which is compatible with Harnad’s) is that the ways
that symbols are grounded in the physical world have an important impact on the
symbolic capacities, through non-computational mechanisms that construct feature
languages and processes which are finely tuned to particular tasks.

The concept of variable-feature languages can be clarified by another example
from the world of LEGO (though one may reasonably object that this is only a toy
domain!): LEGO bricks come in two very distinct varieties. The first is the generic
shapes that are good for many different models. These are typically called bricks,
blocks or elements. LEGO sets in the 1970s and early 1980s contained mainly these
generic, powerfully expressive pieces. However, as the LEGO domain branched out
to novel domains like pirates and sailboats, and to specific fictional settings like Star
Wars, pieces were produced that are both detailed and particular. These so-called
‘cheat pieces’ are very useful for representing specific objects or domains, but have
far less general utility. For instance, sails cannot be satisfactorily constructed from
generic LEGO pieces, but single-piece sails cannot be easily used for other purposes.
Most models of primitive feature-sets are similarly geared toward particular tasks:
and like the LEGO sets, they tend to change significantly when applied to new
domains. Actually, we think this is a pretty good model for how primitive
features work for people: for many tasks generic units work very well, but the
detection of some categories requires (or greatly benefits from) the construction of
novel features that were not previously part of the perceptual repertoire. This implies
that there two different kinds of categorical learning: one in which features
are combined in novel ways to correctly categorize an input set, and another in
which novel features are constructed in a opportunistic way, to match the diagnostic
properties of a category. We think that people are a bit less like children playing
with LEGO, and more like the LEGO company—building new sets of LEGO to fill
particular task-specific niches—than the usual rendition of the cognitive paradigm
suggests.

2. Feature construction in perceptually grounded categories

We would like to be able to write a paragraph that runs something like this: the claim
that novel perceptual features can be learned sounds murky, or even mystical,
without the clarification that the novel features are always drawn from a larger, more
expressive, more primitive language embodying the physical and pre-conceptual
constraints on what can be incorporated into features in the first place. Features are
not created out of nothing. They are built out of stimulus elements. The set of stimuli
together with the properties of the specific receptors constrain the psychological
features that are actually constructed: that is, they control the set of psychologically
and physically possible features. Within that large set is a smaller collection of
psychological primitives which a person has actually constructed. For most
categorizations, it suffices to build complexes of available feature elements so as
to match the diagnostic characteristics of some novel category. The construction
of novel features is the adjustment of the space of available descriptions to match a
novel domain with novel diagnostic features, which is a (heavily constrained)
search through the larger space. We would like to write this, because rooting
feature construction in a language that respected the innate perceptual constraints
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of an agent would clarify and naturalize the construction of novel psychological
primitives; indeed, much perceptual learning can be seen in this light. However, the
adjustment of a large space of psychophysically possible features into a discrete,
limited subset is just one of several likely mechanisms for novel feature construction.
We will discuss some of these other methods in the next section, but for now, let
us consider the evidence for feature construction that can, at least in principle,
be taken to be a selection of a small set of important features from a very large
fixed collection of basic primitives.

Features and dimensions are the units of perception and thought from which
concepts and rules are constructed; we can now ask what physical aspects are
bundled together into these psychological units. Features can be interpreted as
packages of stimulus elements that are separated from other sets of elements
and reflect the subjective organization of the whole stimulus into components.

Features can be revealed using several experimental operationalizations. If two
pieces of physical information, X and Y, are packaged together in the same
psychological feature and Z is not, then several empirical predictions follow.
We predict that searching for X and Y simultaneously should be easier than
simultaneously searching for X and Z (Treisman and Gelade 1980). We predict
that searching for X should be affected by contextual variation to Y more than
Z (Gauthier and Tarr 2002). We predict that categorization based on X should be
slowed more by irrelevant variation to Y than Z (Garner 1974, 1976). It should
be easier for people to attend to X and Y simultaneously than X and Z. All of these
operationalizations tie in to the notion that X and Y are being processed together.

It is also noteworthy that all of these operationalizations imply a continuum
of featurehood. There will be various degrees to which stimulus aspect Y intrudes
upon or facilitates processing of X. Although we conceive of features as packages of
stimulus components, we are not proposing that packages are completely discrete
or mutually exclusive. Rather, they are packages in the same way that cliques can be
circled in social networks or regions can be identified in brain neural networks. In all
three domains, a unit (feature, clique or region) is characterized by relatively dense
within-unit connectivity among elements and relatively sparse connectivity between
elements within the unit and external elements. Features are useful idealizations
because they capture the notion of elements that are densely interconnected, but it is
important to recognize that (1) features (e.g. densely interconnected clusters) may
exist at multiple levels of resolution, (2) elements processed as one feature may not
have uniform interconnectivity to other elements of the same feature and (3) the
internal integrity of different features may vary.

2.1. Characterizing featural change

Having characterized psychological features, we can now turn to the meaning
of feature creation. By this account, feature creation simply involves alterations to
the organization of stimulus elements into features. Figure 1 shows two ways that
this can happen.

By unitization, stimulus elements (circles) that were originally processed into three
features (ovals) come, with practice, to be processed by only two features. Elements
that were originally processed separately are processed together (Shiffrin and
Lightfoot 1997, Goldstone 2000). By differentiation, the same three-element object
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comes to be processed into four features. Elements that were originally psycholo-
gically fused together become isolated (Smith and Kemler 1978, Smith et al. 1997,
Goldstone and Steyvers 2001).

From the figure, it may appear that there are two separate, perhaps contradictory
tracks for featural change. In fact, not only are unitization and differentia-
tion compatible with each other, but they often occur simultaneously. They
are compatible because both processes create appropriate sized units for a task.
When elements co-vary together and their co-occurrence predicts an important
categorization, the elements will tend to be unitized. If elements vary independently
of one another and they are differentially relevant for categorizations, then the
elements will tend to be differentiated. Accordingly, we do not support theories that
propose monolithic developmental trends toward either increasingly unitized
(Gauthier and Tarr 2002) or differentiated (Kemler and Smith 1978) representations.
We believe that both occur, and furthermore, that the same learning algorithm can
do both simultaneously (Goldstone 2003).

We hope that our characterization of featural change as reorganization of
elements into processing units demystifies the process. Features are not created
‘out of nothing.’ They are built out of stimulus elements. A critic might respond,
‘Then why is your account any different from the standard fixed-features approach
in which primitive elements are combined in new arrangements to create object
representations?’ See (Schyns et al. 1998) for a full response to this potential
objection. Here we will mention only two.

First, by our account, features are not (always) created from a set of psychological
primitives. They are created from stimulus elements that often originally have
no parsing in terms of psychological primitives. For example, people can create
a ‘saturation’ detector that is relatively uninfluenced by brightness even if there
was originally no detector that had this response profile (Burns and Shepp 1988).
To be sure, if brightness and saturation affected a brain identically, then there would
be no way to develop a detector that responded to only one of these properties.

Figure 1. An abstract schema for differentiation and unitization.
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However, as long as there are some differential effects of two properties, then
increasingly differentiated detectors can emerge if the training encourages their
isolation. The critic might counter ‘But dimensions that are fused together at
some point in perceptual processing can never be split later’. By analogy, once red
ink has been poured into blue ink, there is no simple procedure for later isolating
the blue ink. Fortunately, this analogy is misleading, and there are several
computational models that can differentiate fused dimensions (Smith et al. 1997,
Edelman 1999, Goldstone 2003). For example, competitive learning networks
differentiate inputs into categories by developing specialized detectors for classes
of stimuli (Rumelhart and Zipser 1985). Random detectors that are slightly more
similar to an input than other detectors will learn to adapt themselves toward the
input and will inhibit other detectors from doing so. The end result is that originally
homogeneous detectors become differentiated and heterogeneous over training.

In addition, there are clear-cut cases where something like new perceptual devices
are created. By becoming physically modified, systems can learn to represent
properties that they were originally unable to represent. In evolutionary time,
organisms developed ears sensitive to acoustic properties that no early organisms
(e.g. bacteria) could detect. This is also possible within a system’s own lifetime. The
cybernetician Gordon Pask built a device that could create its own primitive feature
detectors. It consisted of an array of electrodes partially immersed in an aqueous
solution of metallic salts. Passing current through the electrodes grew dendritic
metallic threads. Eventually the threads created bridges between the electrodes,
which subsequently changed the behavioural repertoire of the device. Cariani (1993)
reports that within a half a day, the system could be grown to be sensitive to a
sound or magnetic field. With more time, the device could discriminate between
two musical pitches. Similarly, there is good neurophysiological evidence that
training can produce changes to early somatosensory, visual and auditory cortex
(see Goldstone (1998) for a review). While these changes are not as radical as
sprouting a new ear, they are existence proofs for how early perceptual devices
can be systematically and physically altered by the environment to change their
representational capacities.

2.2. Unitization

One result of category learning is the creation of perceptual units that combine
stimulus components that are useful for the categorization. Such a process is one
variety of the more general phenomenon of unitization, by which single functional
units are constructed that are triggered when a complex configuration arises. Cattell
(1886) invoked the notion of perceptual unitization to account for the advantage that
he found for tachistoscopically presented words relative to non-words. Gestalt
psychologists proposed the perceptual principle that objects will tend to be perceived
in terms of components that have acquired familiarity (Koffka 1935). Weisstein and
Harris (1974) found that briefly flashed line segments are more accurately identified
when they are part of a set of lines forming a unitary object rather than an
incoherent pattern. They interpreted this effect as showing that arrangements of
lines can form configural patterns that are perceived before the individual lines
are perceived. More recently Gauthier (1998) and Gauthier and Tarr (2002) found
that prolonged experience with a novel object leads to a configural representation

How we learn 351



of it that combines all of its parts into a single, viewpoint specific, functional unit.
Their evidence for such a representation is that recognition of these familiarized
objects improved considerably with practice, and was much more efficient when the
object was in its customary upright form rather than inverted. Unitization has also
been explored in the field of attention. Using a task where participants decided
whether or not two visual objects were identical, Laberge (1973) found that when
stimuli were unexpected, participants were faster at responding to actual letters than
to letter-like controls. Furthermore, this difference diminished as the unfamiliar
letter-like stimuli became more familiar over practice. He argued that the shape
components of often-presented stimuli become processed as a single functional unit
with practice. More recently, Czerwinski et al. (1992) have referred to a process of
perceptual unitization in which conjunctions of stimulus features are bound together
so that they become perceived as a single unit. Shiffrin and Lightfoot (1997) argued
that separated line segments can become unitized following prolonged practice
with the materials. Their evidence comes from the slopes relating the number of
distracter elements to response time in a feature search task. When participants
learned a conjunctive search task in which three line segments were needed to
distinguish the target from distracters, impressive and prolonged decreases in search
slopes were observed over 20 hour-long sessions. These prolonged decreases were
not observed for a simple search task requiring attention to only one component.

Unitization is also important during the development of object perception.
Newborn infants fail to integrate the separate regions of an object that is occluded
(Slater et al. 1990). However, by 4.5 months of age, babies form the same
interpretation of displays whether they are fully visible or occluded (Johnson
1997). This developed ability to integrate different parts into a single object
representation depends on the featural similarity of these parts (Needham 1999).

In our own work on unitization, we (Goldstone 2000) gave participants extended
practice learning the categorization shown in figure 2. In this categorization, a
single object belongs to Category 1, and five very similar objects belong to
Category 2. No single piece of the Category 1 doodle suffices to accurately categorize
it because each piece is also present in several Category 2 doodles. Instead, all of
its pieces must be considered. After 20 hours of practice with these stimuli we find
that participants eventually can categorize the Category 1 doodle very accurately,
and more quickly than would be predicted if they were explicitly combining separate
pieces of information from the doodle together. Consistent with other work
on perceptual unitization (Shiffrin and Lightfoot 1997, Gauthier 1998), we argue
that one way of creating new perceptual building-blocks is to create something
like a photograph-like mental image for highly familiar, complex configurations.
Following this analogy, just as your local camera store does not charge more money
for developing photographs of crowds than pictures of a single person, once a
complex mental image has been formed, it does not require any more effort to
process the unit than the components from which it was built.

2.3. Dimension differentiation

Selective attention is a critical component of adaptive learning, but it may not be the
only process that dynamically alters the description of an object in a categorization
task. A second candidate process is dimension differentiation, by which dimensions
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that are originally psychologically fused together become separated and isolated.
Selective attention presumes that the different dimensions that make up a stimulus
can be selectively attended. To increase attention to size but not colour, one must
be able to isolate size differences from colour differences. In his classic research on
stimulus integrality and separability, Garner argues that stimulus dimensions differ
in how easily they can be isolated or extracted from each other (Garner 1974, 1976).
Dimensions are said to be separable if it is possible to attend to one of the
dimensions without attending to the other. Size and brightness are classic examples
of separable dimensions; making a categorization on the basis of size is not
significantly slowed if there is irrelevant variation on brightness. Dimensions are
integral if variation along an irrelevant dimension cannot be ignored when trying
to attend a relevant dimension. The classic examples of integral dimensions are
saturation and brightness, where saturation is related to the amount of white mixed
into a colour, and brightness is related to the amount of light coming off of a colour.
For saturation and brightness, it is difficult to attend to only one of the dimensions
(Burns and Shepp 1988, Melara et al. 1993).

From the above work distinguishing integral from separate dimensions, one might
conclude that selective attention can proceed with separable but not integral
dimensions. However, one interesting possibility is that category learning can, to
some extent, change the status of dimensions, transforming dimensions that were
originally integral into more separable dimensions. Experience may change the
underlying representation of a pair of dimensions such that they come to be treated
as relatively independent and non-interfering sources of variation that compose an
object. Seeing that stimuli in a set vary along two orthogonal dimensions may allow
the dimensions to be teased apart and isolated, particularly if the two dimensions are
differentially diagnostic for categorization. There is developmental evidence that

Figure 2. Stimuli used by Goldstone (2000). Each letter represents a particular stimulus
segment, and each stimulus is composed of five segments. To categorize the item represented
by ‘ABCDE’ as belonging to Category 1, it is necessary to process information associated

with each of its segments because every single-segment distortion from ABCDE belongs
in Category 2. The dashed lines in the right column were not part of the stimuli, but show
the decomposition of the stimuli into their five components.
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dimensions that are easily isolated by adults, such as the brightness and size of a
square, are treated as fused together for four-year old children (Kemler and Smith
1978). It is relatively difficult for children to decide whether two objects are identical
on a particular dimension, but relatively easy for them to decide whether they are
similar across many dimensions (Smith 1989). Children show considerable difficulty
in tasks that require selective attention to one dimension while ignoring another,
even if the dimensions are separable for adults (Smith and Kemler 1978). For
example, children seem to be distracted by shape differences when they are instructed
to make comparisons based on colour. Adjectives that refer to single dimensions
are learned by children relatively slowly compared to nouns (Smith et al. 1997).

The developmental trend toward increasingly differentiated dimensions is echoed
by adult training studies. Under certain circumstances, colour experts (art students
and vision scientists) are better able to selectively attend to dimensions (e.g. hue,
chroma, and value) that comprise colour than are non-experts (Burns and Shepp
1988). Goldstone (1994) has shown that people who learn a categorization in which
saturation is relevant and brightness is irrelevant (or vice versa) can learn to perform
the categorization accurately, and as a result of category learning, they develop
a selectively heightened sensitivity at making saturation, relative to brightness,
discriminations. That is, categorization training that makes one dimension diag-
nostic and another dimension non-diagnostic can serve to split apart these
dimensions, even if they are traditionally considered to be integral dimensions.
These training studies show that, to know how integral two dimensions are, one
has to know something about the observer’s history.

Goldstone and Steyvers (2001) have recently explored whether genuinely arbitrary
dimensions can become isolated from each other. Their subjects first learned to
group the 16 faces shown in figure 3 into categories that split the faces either
horizontally or vertically into two groups with eight faces each. The faces varied
along arbitrary dimensions that were created by morphing between randomly paired
faces. Dimension A was formed by gradually blending from Face 1 to Face 2, while
Dimension B was formed by gradually blending from Face 3 to Face 4. Each of
the remaining faces is defined half by its value on Dimension A and half by its value
on Dimension B. Results showed that: (a) people could easily learn either horizontal
or vertical categorization rules; (b) once a categorization was learned, participants
could effectively and automatically ignore variation along the irrelevant dimension;
(c) only the category-relevant dimension became perceptually sensitized when
participants were given a transfer same/different perceptual judgment task; and
(d) there was positive transfer between categorization rules that presumed the same
organization of faces into perceptual dimensions and negative transfer between rules
that required cross-cutting, incompatible organizations. Together, these results
strongly suggest that there is more to category learning than learning to selectively
attend to existing dimensions. Perceptual learning also involves creating new
dimensions that can then be selectively attended once created.

3. The role of feature construction in abstract reasoning

We have discussed the occasional but important occurrence of novel feature
construction in the learning of perceptual categories; we next turn to high-level

D. Landy and R. L. Goldstone354



conceptual tasks, and consider whether there is a similar role for primitive feature
construction there. We will examine particularly the task of modelling scientific
problem solving, because scientific understanding often involves the construction
of novel contents, so it seems likely that novel conceptual primitives are often
constructed in the course of routine scientific activity. Even in laboratory experi-
ments with predefined perceptual categories, it is very difficult to establish that
a particular instance of learning involves the construction of a novel primitive,
and is not an instance of chunking prior primitives; it is similarly difficult to establish
conclusively that any particular historical instance of scientific activity involves the
construction of novel primitives. The goal of this section, therefore, is not to
establish conclusively that variable feature languages are necessary to routine
scientific activity, but just to argue that an alternative account to fixed feature sets
exists, and to indicate where and how that alternative account might fit into an
otherwise largely computationalist framework that depends on propositional
compositions of well-chosen features. It is not sufficient for our case that new

Figure 3. Stimuli used by Goldstone and Steyvers (2001). The four Faces 1, 2, 3 and 4
are blended in different proportions to create a 4 � 4 matrix of faces. The proportions of

Faces 1 and 2 are negatively correlated such that the more of Face 1 present in one of the 16
centre faces, the less of Face 2 there will be. This negative correlation establishes Dimension
A, and a similar negative correlation between Faces 3 and 4 establishes Dimension B.

Each of the 16 centre faces is defined half by its value on Dimension A and half by its value
on Dimension B.
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primitive features be created—our case is that feature construction forms an
interesting and vital part of the cognitive story of high-level categorization and
reasoning. Though our case will only be indicative, not demonstrative, we find no
reason to prefer models with small, fixed, generic building blocks to those that adapt
their primitive features to fit novel problems.

The issue taken up here is distinct from the concern over incommensurability
of scientific theories (Kuhn 1962, Carey 1988). There is general agreement that
special-purpose high-level conceptual languages that represent two different theories
may each be incapable of expressing each other, whether or not there is a more
primitive psychological language that captures both. It is clear that special-purpose
high-level conceptual languages play an important role in expert reasoning (Chase
and Simon 1973, Chi and Glaser 1982, Smith et al. 1985, Carey 1988, Chi 1995,
Nersessian 2002) and, furthermore, it is likely that language well-suited for
expressing a particular theory or understanding of a domain will be unable to
capture the distinctions important to very different practices and perspectives;
the question here is over whether both languages are necessarily constructed
out of a more basic language of generic psychologically available features. The
computationalist assumption affords only two possibilities: either concepts are part
of the primitive set of features available to an agent, or they are compositional
constructions. Available models of concept creation such as model-based reasoning,
imagistic reasoning, and analogy, all construct high-level concepts from fixed set
of underlying features and relations. In contrast, we do not expect to find a generic
set of psychological features that cleanly makes all necessary discriminations;
instead, we think building the right feature discriminations is an ongoing, largely
non-computational process, which is nevertheless a core piece of much scientific
activity. This belief results from an acceptance, not a denial, of the assumption that
scientific cognition is mechanistically continuous with everyday cognition. We think
that building the right (custom) feature discriminations is an important part of
everyday cognition. This perspective leads naturally to notions of what a cognitive
model of particular historical scientific episodes should cover, and of the significance
of aspects of scientific practice.

In the rest of this section, we will discuss specific ways that the conceptual tools
made available by cognitive approaches to perceptual learning can inform models
of scientific reasoning: in an imagined mathematical case, in Chi’s model of radical
conceptual change as ontological change, and finally in distributed-cognition models
of scientific communities.

3.1. Differentiation and unitization in conceptual reasoning

There is little doubt that much of our arithmetic knowledge is interpreted in terms
of the whole numbers and the basic operations of addition and multiplication.
For high-school level mathematics, addition and numbers can be treated as unified
entities, and laws can be considered, expressed, and no doubt represented in terms of
them. That is, these elements form a natural feature set for modelling mathematical
knowledge, and are used as the base language of knowledge expression in prominent
theories of arithmetic learning, such as ACT-R (Lebiere 1998). However, when
learning abstract algebra, the properties of the numbers and their operations are
considerably redigested, and it seems quite likely that knowledge in this domain must

D. Landy and R. L. Goldstone356



be structured in such a way that operations like addition over the naturals must
be considered not as a primitive construct, but a defined and particular compound
of more generic properties that are not readily apparent to the casual mathematical
consumer, such as distributivity or associativity, or the presence or absence of
identity of an element or inverse. When this reorganization occurs in the transition
from an arithmetic perspective toward an algebraic one, we find that concepts that
were unified entities in the initial language must be differentiated in the algebraic
one. So for instance, an arithmetic understanding of addition does not distinguish
between the operation of addition over the non-negative integers, and addition over
the reals, but an understanding rooted in algebra treats these as separate concepts,
since the latter is a group, but the former is a monoid. The initial arithmetic concept
structure lacks the representational ability to express this difference, but because
the structures are distinguished in the study of algebra, a new specialized language
of features must be constructed. This situation mirrors the case of developed features
in perceptual situations: the agent has a language which segments a conceptual
situation poorly (for current purposes), but also is impacted differentially by
different physical stimulus elements; our perceptual analogy suggests that in the
abstract case initially homogeneous addition ‘detectors’ with only slight random
variations in their response profiles might eventually become automatically tuned
to different classes of addition. If so, this would form an important part of the
cognitive story of learning algebra, but would not be the implementation of any
computation on the part of the agent.

3.2. Vestiges of the natural methods of feature creation

Up to this point, our story runs something like this: non-computational perceptual
mechanisms drive the construction of abstract primitive terms, which operate
combinatorially in computational processes like analogy, chunking, generalization,
inference, and so on. The learning mechanisms that govern the construction of
high-level primitives share many of the properties of their more directly visual
counterparts. Since we expect that primitive terms in languages operate much like
feature detectors, the construction of novel primitives should often occur either
through the differentiation of a term of the replaced theory into two, or the
integration of two primitives into a single novel property. Several expectations
follow: the development of expert conceptual schemes should not replace or
eliminate prior naı̈ve schemes, but will rather (at least sometimes) coexist alongside
more traditional feature sets. As in perceptual categorization tasks, the high-level
demands of the domain will play a significant role in guiding the construction
of novel primitive features, but largely not through direct expression of rules or
principles; instead, our expectation is that instruction regarding high-level concep-
tual primitives primarily aids learning by drawing attention to relevant diagnostic
aspects of stimuli (because the segmentation is designed to construct perceptual units
which correspond to diagnostic categories), and by controlling the character of
training situations so as to optimize the performance of the processes of primitive
construction. That is, instruction serves primarily to set up a categorical system
which cannot be readily expressed from the terms available in the old language;
this drives the adaptation of the underlying primitive set towards one more
suited to discriminating the terms of the language the instructor is trying to teach.
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From a computationalist perspective, supervision by instruction can help only if an
agent can formulate a hypothesis in the first place. We suggest that the space of
possible hypotheses can in fact be expanded opportunistically, if leveraged by
instruction and perceptual-associative scaffolding. Part of our proposal is that
segmenting situations appropriately is an important learned skill, and therefore
that a significant part of the task of the science learner is to control the stimuli that
they receive so as to optimize the automatic (non-rational) processes of their own
perceptual system. Indeed, we suspect that an intuitive understanding of automatic
perceptual processes forms part of the skill set of many successful scientists.

Tweney (1992) discusses the importance of Faraday’s understanding of his
own perceptual processes in Faraday’s method for building an account of the
effect of complex vibrations of a metal plate on metal filings resting on it. Tweney
suggests that the internal representation of the visual patterns of the plate were not
trained, and so for instance that the similarities between various such patterns could
be readily detected by innate and domain-general processes. Mounting psychological
evidence indicates, however, that perceptual learning and context both have a
significant impact on similarity judgments of visual patterns (Goldstone et al.
1997). Faraday’s experiments thus provide a valuable example of a scientific project
in which results in perceptual learning are not only the basis of an appealing intuitive
extension, but are in fact quite directly applicable.

Real perception of novel properties plays a significant role in some historical
analyses of particular scientific traditions. Galison (1997), for example, emphasizes
the role of training on judgments of similarities between photographic plate features
in discoveries made by researchers working in the image tradition of high-energy
particle physics. Galison notes the importance of visual similarity in persuading
researchers in this very productive tradition. However, the visual ‘similarity’ under
discussion is often not at all obvious without extensive practice and training
(Pickering 1984); indeed, manuals of pictures of typical situations were produced
to train the perceptual processes of aspiring scientists (Gentner et al. 1954). On
our account, the deliberate exposure to stimuli that can, with an available and
appropriate high-level categorization, automatically guide the construction of
particular diagnostic combinations of physical sensitivities is a fundamental part
of the cognitive task of this part of 20th-century particle physics. Unlike subjects
of most categorization experiments, scientists expend a large effort organizing
their own experiences (Cantor 1992). One significant result of this process is the
construction via non-computational processes of the appropriate conceptual system;
this construction is a significant cognitive activity, which occurs alongside computa-
tional combinations and law creation. If this analysis is correct, then cognitive
studies of scientific activity can and should involve characterizing the processes that
yield revisions of special-purpose conceptual languages.

So learning compositional special-purpose languages drives the construction
of novel primitive features. The primitives generated by non-computational adjust-
ments can, in turn, serve as generic hooks or terms from which general hypotheses,
laws, and definitions can be constructed. As Harnad (1990) and Fodor (1998) argue,
such primitives must be hooked up to the world, and this may support a notion
of content more satisfactory than inferential role semantics. For modelling purposes,
how the conceptual structure of an agent is hooked up to the world plays a role in the
kinds of generalizations that structure can detect and support. That is, in order to
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support the construction or evaluation of a general rule (even high-level), perceptual
observations must be constructed that exhibit that rule. A set of primitives which is
well-matched to a domain will permit the same computational resources to construct
more successful constructions. So, in addition to providing symbolic tokens
from which to construct language-like laws, hypotheses or properties, perceptual
primitives provide the language of observation for an agent. Structural characteri-
stics of psychological primitives may contribute to the evaluation of similarity
between primitive terms, a process that is generally stipulative in models such as
PHINEAS.

Non-computational perceptual processes have typically been studied with connec-
tionist architectures. Because many connectionist architectures adaptively respond
to imposed category structures, they are often used in modelling top-down influence
on perception. Connectionist architectures are certainly useful and powerful tools
with interesting applications to perceptual learning. However, the two are not
interchangeable. First, connectionist architectures, like standard symbolic accounts,
often assume that input has been heavily processed, and that relevant features have
already been extracted before the stimulus ever reaches the ‘input layer’ (Elman
1990, 1993, Christiansen and Chater 1999). Thus, the task facing the network is one
of combining semantically coded input statements. In models like Goldstone (2003),
the input stimulus is taken to correspond to unprocessed features of the world,
and the initial ‘hidden layer’ to correspond to the segmentation of the network.
Here the network architecture and processes are constructed to closely reflect
hypotheses about the nature of the constraints imposed by the agent’s perceptual
apparatus, instead of corresponding to a generic integration of pre-processed
features. Thus, the initial segmentation layer adapts simultaneously to pressures
coming from the world, the desired categorical system, and also the specific
constraints imposed by the tools available in the act of perception. These aspects
of the network are what make it an appropriate model of the interactions between
perception and categorization.

3.3. Radical ontological change as the result of perceptual learning

Our discussion of the possible payoff of attention to detailed dynamics of perception
in primitive construction has been abstract: at this point we will discuss in somewhat
more detail one extant proposal within the cognitive studies of science that we feel
might benefit particularly from a perceptual perspective: in particular, we consider
Chi’s proposal for the mechanisms governing radical conceptual change (Chi 1992,
Chi and Hausmann 2003). Since our principle goal is not to provide a full account
of this complex phenomenon, our coverage of the topic will be extremely brief, and
we will not present a model of any underlying mechanisms. Our hope, rather, is that
a brief consideration of Chi’s proposal will help to illustrate the explanatory
opportunities that a dual model of concepts, with a non-computational perceptual
component enabling and influencing a computational component, can provide to
extant purely computationalist process proposals.

Chi’s ontological model runs like this: every concept is asserted to be connected
to another, more generic concept (its ontological category); this set of categories
forms a tree, whose root contains all concepts (Chi calls the root ‘entity’). Since the
structure of the tree is a psychological fact about an agent, how the tree is organized
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depends on whose tree it is, but most people seem to share the deepest categories:
thus, entities contain at a top level at least some concepts like MATERIAL,
PROCESS and MENTAL STATE. And in turn, materials can be natural or
artificial, processes can be intentional or physical, and mental states can be abstract
or emotional. The relationship the ontological tree defines is containment, so that
one path might contain the facts that ‘anger is an emotional state’, ‘an emotional
state is a mental state’, and ‘a mental state is a process’. Each ontological path
from ENTITY constrains the types of attributes that a member of a concept may
coherently embody: thus, material objects may have colour, but processes cannot.
Chi calls the attributes that a concept’s member might have ‘ontological attributes’.
Concepts inherit all the ontological attributes of their parents, and often have
additional attributes of their own (which, in turn, will be passed to their
descendents). However, it is important that these are only potential attributes,
not attributes that are necessarily carried (or believed to be carried) by members
of a particular category.

There are many facts about a concept that can change, on this sort of account.
First, one might come to have a new belief about a concept’s members, e.g. ‘some
squirrels are black’. Concepts can also change in such a way that the ontological tree
is adjusted. First, you might have a new concept which integrates some common
items: for instance, if someone learns the concept PINE TREE, then that concept
will come between, say, the higher level concept TREE, and concepts SPRUCE
or WHITE PINE. Another possibility is that a concept will leave its parent, and
become the direct child of a grandparent or other ancestor; so one might at a certain
point believe that ADDITION ON THE NATURALS is a child of ADDITION ON
THE INTEGERS, which is a child of, perhaps ADDITION. After an introduction
to abstract algebra, however, one might move ADDITION ON THE NATURALS
to directly beneath the generic ADDITION. Another kind of ontological adjustment
occurs when one concept moves from a particular branch to a separate branch;
when, that is, the concept’s parent becomes something that is not in the path from
ENTITY to the concept. So if someone who thinks that WHALE is below FISH,
which is below ANIMAL learns that whales are mammals, WHALE must be shifted
to MAMMAL, which is not on the path from ENTITY to WHALE, nor is it
a descendent of WHALE. In some cases like these, the ontological attributes of a
concept may change, if it moves to a part of the tree with distinct ontological
attributes. Chi argues that this kind of learning, called ‘ontological change’, is
qualitatively different from other kinds of learning. In particular, ontological
changes cannot be learned by induction, analogy, generalization, inference or any
other psychological mechanism. The only way to make an ontological shift (more or
less), is to be instructed to do so, and even in this case, such changes are slow, and
often incomplete. Indeed, even physics experts seem to retain their naı̈ve concept
of force, in addition to gaining a new scientific concept of force as events. The
psychological reality of ontological learning, as well as its distinctive characteristics,
has extensive empirical support (Gelman 1988).

Within the context of this ontological model, then, Chi would like to equate
the particularly difficult conceptual adjustments of physics and other domains with
those that involve ontological change. And, in fact, the classes correspond quite well;
for instance, conceiving of forces as a kind of process, rather than as a substance
contained in a moving body, is very difficult for physics novices, and moving an
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object from MATERIAL to PROCESS is a major ontological shift (since the lowest
common ancestor is ENTITY). Let us take it for granted, then, that the qualitatively
distinct facts mentioned above correspond quite well to those requiring difficult
ontological changes, and consider why we might expect ontological shifts to be both
difficult and qualitatively distinct from other kinds of learning. This is difficult
to explain on a purely computationalist account; the tools of perceptual learning,
however, offer a very natural account.

To review, the model of ontological change should account for the following
characteristics, as naturally as possible: (a) ontological changes should be resistant to
analogy, inference, generalization, and the attribution of properties; (b) ontological
changes should be very difficult to learn under all circumstances, but less so under
the influence of direct instruction; and (c) in many cases, ontological changes should
be incomplete, in the sense that naı̈ve intuitions should often be more or less
unperturbed by the learning of new information.

The difficulty with a computationalist account is that it’s hard to distinguish the
ontological parent of a concept, from any of the other properties or rules which
characterize a concept’s role in an overall conceptual scheme. It is natural to want to
represent the concept’s parent as a primitive property of a concept; but then why
shouldn’t it be learned like every other property of a concept? We will review
Chi’s explanation of this aspect of things as it currently stands; we will then indicate
why a familiarity with the tools of perceptual learning might prove useful in
resolving this difficult issue.

Chi’s resolution to the problem of making ontological change difficult on a
computational account is to contend that it is, in fact, not difficult at all. That is,
making an ontological adjustment is not difficult, if directly instructed to do so;
what is difficult, on her account, is first, deciding that ontological recategorization is
necessary, and second, dealing with the consequences of making such an adjustment.
Ontological changes are, according to Chi, relatively rare in learning; therefore, it is
not likely that a learner will try making an ontological adjustment. What is more,
a learner may not have a thorough understanding of the new parent concept, which
will make learning much more difficult: so for instance, learning that heat transfer
is an emergent property of many small-scale events will be very difficult, unless
emergent properties are already well understood. Even if the learner does understand
the new concept, it may be very difficult to understand all of the implications of
a new categorization, because each belief held about the old concept makes use of
ontological attributes unavailable in the new position. Finally, it may often be
the case that, rather than altering the parent of an existing concept, one constructs
a brand new concept in the appropriate new place, and at some point attaches
the known word to the new concept in place of the old. Chi observes that FORCE,
for instance, may really refer to two separate concepts, one of an impetus (a type
of MATERIAL) and another separate expert concept (a child of PROCESS).

The computational account given above does a good job of accounting for the
phenomenon, but involves a certain amount of awkwardness and implausibility.
First of all, it is not at all clear that ontological recategorizations are much less
common than other kinds of learning. Chi provides no evidence for this claim,
appealing to our intuition that ontological changes are rare. However, the opposite
seems to be true; learning novel ontologies is extremely common, and very often
involves lateral movements and the addition or deletion of ontogical properties.
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Most people must learn, for instance, that charcoal and diamonds are both varieties
of carbon; that genes are a kind of protein (and proteins are not a kind of vitamin);
that whales and dolphins are fish, and tadpoles are not. Scientific taxonomies of
natural kinds differ significantly from most naı̈ve notions, and are typically taught in
school; mushrooms are a kind of fungus and not a kind of plant, for instance, and
sponges are not plants but animals. Learning technological systems requires many
ontological changes: a Corolla is a kind of Toyota which is a kind of Japanese car
which is a kind of car which is just a kind of vehicle. Nylon is a kind of plastic that is
a kind of petroleum, which is, of all things, an organic material. Some rubber comes
from a rubber plant, and so is, again, a kind of plant. Legal systems also demand
lateral ontological change: ketchup is a vegetable, although tomatoes are a kind of
fruit (learning that fruits are vegetables also requires an lateral ontological shift, and
a shift in ontological properties); DVD burning may or may not be a kind of fair use;
the right to abortion is currently a variety of the parent concept, CONSTITU-
TIONAL RIGHT. Many of these shifts involve small ontological attribute changes.
For example, it makes sense to ask if the right to abortion is a right in the United
States, only if it is represented as a sub-concept of CONSTITUTIONAL RIGHT.
For someone who represents abortion rights as a type of basic human right, it makes
no sense to attribute a nationality. In short, it seems that lateral ontological shifts
happen frequently enough to call into question a claim that ontological change is
ignored as a deliberate strategy. To be sure, none of these ontological changes are as
fundamental as the change from MATERIAL to PROCESS; but rarity of lateral
ontological change seems to be false (or at least undersupported) on the face of it,
and it is rarity of ontological change that was supposed to account for the qualitative
differences in the kinds of instruction that can generate ontological changes.

The worry is pressing; if ontological change really is (just) another property of
concepts, and is not so rare as to be implausible, then it is not clear why learning an
attribute that is incompatible with the current ontological position does not induce,
more or less immediately, an ontological change. That is, ontological attributes,
since they are disjoint across lateral positions, can entail that a miscategorization has
occurred; if they do not cause recategorizations, then it must be that ontological
changes are somehow inhibited. But this inhibition was supposed to fall out of the
rarity of the step. If ontological changes are neither particularly rare nor particularly
hard, it is very odd to suppose that people ignore standard forms of evidence, and
require direct instruction. Indeed, even if the alteration of ontological attributes
is rare, since it is easily inferred from the application by a teacher of nonsensical
attributes, it is odd that learners don’t take advantage of this information.

Chi also contends that ontological change is difficult because it implies that most
or all beliefs involving the relevant concept must be reinterpreted. For instance, when
one learns that heat is not a fluid but an emergent process, then one will need
to revisit any beliefs one previously had regarding its viscosity. Though this is true,
it is also the case that non-ontological belief changes may, and sometimes do,
require radical revisions of global beliefs; this is the famous frame problem. Once
again, there do not seem to be any qualitative differences between ontological change
and other kinds of learning.

Consider now an alternate proposal, informed by a notion of primitive feature
construction. On this account, each category is characterized by two separate sets of
properties: the first are attributes and properties that an agent attributes to members
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of that class, the second are intrinsic properties of a perceptual system that detects
the presence of a primitive term. For simplicity of exposition, we will imagine that
primitive detection occurs through a basic neural network connecting stimulus
properties to the spoken language the agent is learning. On our model, then, two
genuinely separate types of learning really do occur: laws, rules, and beliefs are
learned through traditional psychological–computational mechanisms like analogy
and inference. These computational mechanisms operate over basic primitives,
whose intrinsic properties are learned on the basis of statistical and associative
evidence (guided by perceptual apparatus). Ontological structure, on this account,
is a fact ‘about’ a symbol, not a fact which contains a symbol. Beliefs or properties
are compound statements referring to symbols; on the scheme we’re offering,
ontological category is a fact about the intrinsic character of a symbol that guides
that property’s detection. On this account, ontological categories fall out of the
similarity space of the internal structure of the networks that recognize them.

Clusters of similar categories that fit particular contexts or into particular roles
fall naturally out of many connectionist tasks. Figure 4 shows one such cluster
diagram produced by a network constructed for Landy (2004).

In artificial and natural language studies, such networks often naturally induce
trees that distinguish the primary categories of the languages on which they are
trained (e.g., nouns yield a reliably distinct kind of representation from verbs

Figure 4. A cluster diagram from Landy (2004; this diagram appeared only in the talk).
The language in this case was {a{bac|dae}a}*. Structurally similar elements are located
close to one another.
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(Elman 1995)). Similarly, ontological attributes are treated as statistical facts about
the associative similarity of different primitives.

How does this account resolve the peculiarities in the computational approach to
ontological change? First, if ontological learning is a kind of perceptual learning,
then it is not at all surprising that naı̈ve versions of concepts like force are typically
retained. Differentiation is, as we have emphasized, a common perceptual operation.
Second, the identification of ontological adjustment with the adaptation of
the internal structure of a high-level primitive gives a natural explanation to the
fact that property adjustment is responsive to different kinds of instruction than
ontological category; they are different processes, working over very different kinds
of representations, so it is not unreasonable that different methods of correction are
effective for each case. Finally, this account explains why ontological changes are
typically more amenable to direct instruction than to other forms of learning. The
ontological category is not part of the externally represented properties of an entity.
Rather, the phrase ‘ontological category’ describes a fact about the internal structure
of the detector. This internal structural fact contributes to the combinatorial system
by providing context-sensitive similarities between terms, and by informing and
licensing particular conceptual combinations; but it is not overtly expressed in the
language itself. As such, it is not directly correctable, in the way that a property, for
example, may be. However, ontological category is taught by the process of training
a subject to use a new categorical system. Thus, direct instruction that force is a
process and not a substance will be effective because such instruction provides a new
set of external categories that place force closer to other processes. However, this
process will at best speed up an intrinsically extended process of adjustment, and is
unlikely, even in best case, to make fundamental ontological conceptual changes less
than difficult. However, ontological changes between nearby categories, such as
FISH and MAMMAL, will be relatively easy, simply because the concepts are
already represented similarly. On the clustering account, this similarity of representa-
tion is why they are nearby on the ontological tree in the first place.

Ontological change is an impressive account of radical conceptual changes
in development. By taking a perceptual learning perspective, many perplexing
features of the computational account of ontological learning become quite natural.
We have not given a full account of ontological change or development, nor is that
our purpose here. Instead, we indicate the value of non-computationalist perceptual
learning in providing insight into the standard cognitive problems of scientific
reasoning. Such learning clearly occurs, and an understanding of its characteristic
properties can only enhance the capacity of cognitive studies of science to explain
and discuss human behaviour.

3.4. Perception in distributed cognitive agents

The individual scientist is not the only cognitive agent on today’s scientific scene.
Considerable research suggests that distributed collections of scientists, institutions
and tools or instruments may effectively constitute a single cognitive agent (Hutchins
1995, Clark and Chalmers 1998, Giere 2003, Nersessian et al. 2003). This method
of analysis reveals further suggestive connections between feature construction in
perception and the activities of a larger-scale cognitive agent. That experimental
practices are indeed heavily guided by theoretical demands forms a prominent part
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of modern analyses of historical situations (Pickering 1984, Kohler 1994). One
general virtue of including the creation of high-level custom-purpose languages
cashed out in practices and devices for the organization of physical stimuli in
the cognitive story of science is the potential for increased compatibility with
sophisticated and illuminating historical and sociological analyses of science, and
for extending and deepening the analogy between experiment and theory in scientific
communities and the processes of conceptual development in individuals.

If we consider extended social organizations such as laboratories as our funda-
mental cognitive unit, then the possibilities for non-computational construction
of novel sensitivities become even more central. For instance, we observed that
a saturation-only detector could not be constructed if saturation and brightness
affected the cognizer identically. For unadorned individuals, this may be right: but
research groups generally do construct novel sensitivities to aspects of their tasks.

We said in the previous section that we could not endorse the conservative-
sounding claim that if two stimuli did not differentially impact an agent, then
those stimuli could not be differentiated in principle. Here’s why: cognitive agents
engaged in processes of discovery, unlike subjects in perceptual learning studies,
actively alter their own perceptual experiences. By the construction of measuring
devices and exploratory tools and practices, scientific agents can circumvent
limitations on the sensitivity of their measuring devices. The impact that the
phases of the moons of Jupiter made on Galileo was greatly amplified by the use
of a telescope. The construction of a novel instrument is often deliberately performed
in order to differentiate between two possible physical situations that current
techniques cannot distinguish; this is the same kind of process that governs
differentiation in perceptual learning. In perceptual learning, the constraints of the
detection system govern features which can be built, while in tool-building, tech-
nological and sociological considerations constrain what new devices, and therefore
what new featural sensitivities may be constructed. However, the construction of
new instruments does not just amplify existing differences, but may create entirely
new sensitivities. For instance, the development of photographic plates incidentally
produced a sensitivity to X-ray stimuli. In this sense, perception in high-level
cognition can be more like the development of ears than the development of new
feature detection units. These processes are an essential part of the cognitive story of
scientific activity.

4. Discussion

Despite the large support for intrinsic primitive representational systems, systems that
develop new psychological primitives in response to specific tasks have had consider-
able success in modelling many aspects of categorization and category learning.
While they are only easily verified in laboratory experiments, it is likely that novel
features are also constructed in the course of high-level conceptual learning, both
in individual people, and also perhaps in distributed cognitive systems. Task or
domain-specific primitive properties geared toward specific purposes are generated
during the exploration of new domains through methods that are not usefully thought
of as recombinations of an underlying constant vocabulary of primitive psychological
elements. Using learning methods like competitive learning, which exacerbate small
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differences in known categories through repeated exposure to diagnostic situations,
and more complex and deliberate methods of tool and experiment construction,
novel sensitivities can be constructed when needed.

Many approaches that deny the cognition-is-computation hypothesis further deny
that computational models are a useful way to explore the mind (Searle 1980,
van Gelder 1995); following Uhr (1978), Harnad (1990), Schyns et al. (1998), the
approach to cognition discussed here endorses both the notion that cognition often is
best viewed as the mental processing of symbols in a specialized formal language,
and also that formal models of cognitive processes are nearly universal. Indeed, the
models described throughout this paper have been formalized and implemented in
computer programs. Essentially, what we deny is that specialized concepts are
generally rooted in or composed of other, more basic concepts. Concepts are instead
grounded in real perception and manipulation of a real world; this manipulation is
surely guided by pre-existing concepts, and pre-existing concepts are often the basis
for newly constructed ones, but not through processes which are best modelled by
conceiving of the mind as a computer operating over abstract symbols. Dealing
appropriately with the importance of concept formation and relation creation to
scientific discovery and rule construction is a necessary step in modelling the
cognitive aspects of this complex high-level activity.

The approach to the interaction between associative modelling and rule-based
reasoning taken here is different than some which have been presented, in that rather
than postulating two adjacent or competing systems, with separate components, we
suggest two interacting, complementary systems If true, the construction of task-
specific psychological primitives offers profound opportunities to researchers inter-
ested in modelling, either by a computer-based simulation, or in a psychological or
sociological context, the cognitive aspects of scientific behaviours.
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