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Abstract

Unlike many classical systems, what constitutes the “repre-
sentations” in a neural network is not always explicit. In
many analyses, the contents of the hidden layer are taken
to be the representations. From this perspective, the repre-
sentation of simple recurrent networks (SRNs) are context-
sensitive and not generally compositional.
However, in this paper, an alternative analysis of the way
SRNs “represent” is proposed that leads to a different con-
clusion. It is shown that if an SRN’s representation of some
input is taken to be a function specifying the network’s dispo-
sitional response to that input, then SRNs are in fact formally
compositional. This analysis of representation is defended
as both natural and formally valid. Implications for the rela-
tionship between compositionality and systematicity are then
explored. It is concluded that, surprisingly, compositionality
does not play a large part in explaining systematicity.

Background
Since this paper is about how the representations in an sim-
ple recurrent network (SRN) (Elman 1990) can be compo-
sitional, a large part of the paper will be spent clarifying
what “the representations” really are. Unlike most classical
models, where the representational scheme is preselected,
no distinct aspect of a network is definitionally “the repre-
sentation”. The properties of the network’s representation
may depend on the analysis used to extract the represen-
tational scheme. Under a common interpretation, the net-
work’s representation of some input is taken to be the vector
of values on the hidden layer immediately after processing
that input (Elman 1990; 1995; Tabor & Tanenhaus 1999;
Rodriguez, Wiles, & Elman 1999). Types are associated
with regions of hidden state space in which tokens typi-
cally appear. Because inputs prior to the most recently re-
ceived are stored only implicitly (in the ways a current to-
ken deviate from the most usual tokens), there is no clear
way to compose tokens, and therefore no way to evaluate
whether or how they may be compositional. In fact, the in-
teresting properties of SRNs are often attributed precisely to
this context-sensitivity in their static representations. Here I
begin to formalize the intuition that representations may en-
compass not just passive structures but also active processes,
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by taking as the representation of an input the network’s
dispositional response to that input. That is, the represen-
tation is just the ways that a network behaves when con-
fronted with an input. To my surprise, by following this in-
tuition I find that SRNs are both compositional and context-
independent.

There is a consensus among a wide variety of cognitive
scientists that thought is generally compositional (Horwich
1997; Fodor & Lepore 2002; Aydede 1997), and that fur-
thermore, it is largely this compositionality which accounts
for the many systematic aspects of human behavior. There
is much less consensus about just what properties the terms
‘compositionality’ and ‘systematicity’ are intended to pick
out. Broadly speaking, compositionality seems to be that
property of classical formal systems (and to some extent of
natural languages) that the semantic value or ‘meaning’ of a
compound statement is built out of the meanings of its parts.
That is, in order to determine the semantic value of the com-
pound expression x ∗ y, it suffices to know that x has the
value 5, and that y has the value 7; one does not need to
know the exact form of the subexpressions. Formally (fol-
lowing Zadrozny 1994), this just means that there is a homo-
morphism from some syntax S to a set of representations R
(where S and R have arbitrary closed composition operators
• and ◦). That is, there should be a function r : S −→ R
which satisfies

rs•t = rs ◦ rt

I will call such a function a compositional representation
scheme1.

The term ‘systematicity’ has been used to denote several
different kinds of regularities; this makes giving a general
or formal definition impossible. Later, I will discuss sev-
eral of these regularities, in particular regularities in the the
ways that intelligent agents learn new words, represent novel
arrangements of known words, and organize their represen-
tational composites. For now, ‘systematicity’ will be used

1In order for r to be a representation scheme, it should also re-
tain sufficient information about the inputs to discriminate all the
system’s responses. For instance, a function which maps every-
thing to an identity is a homomorphism, but not a representation.
It is therefore useful to add the further requirement that there be a
regular function from representations to the outputs of the system,
so that the representations can mediate between inputs and outputs,
in order for a function to denote a representation scheme.



to refer to any of this broad group of phenomena. Com-
positionality is often taken to guarantee, or at least encour-
age, all of these regularities: As Fodor 1987 has put it “OK,
so here’s the argument: Linguistic capacities are system-
atic, and that’s because sentences have constituent struc-
ture.” But just why and how compositional representations
are supposed to explain systematicity is left unclear. The re-
sults presented here indicate that in fact these two properties
may come apart rather easily; it may therefore be useful to
look for additional constraints or factors which have typi-
cally been associated with compositionality.

Compositional Representations in Simple
Recurrent Networks

Consider a typical SRN, with input weights Win, output
weights Wout, and recurrent connections in the hidden layer
with weight matrix C, and a hidden-layer vector space H .
Let S denote the closure of the set of legal inputs to the
network (the network’s lexicon) under concatenation (•): if
the network’s inputs include ‘John’ (henceforth J), ‘Loves’
(L), and ‘Mary’ (M ), for instance, then S includes each of
these and also compound phrases such as ‘John loves’, ‘John
loves Mary’, ‘John John Mary John’, and so on2. Call the
collection of possible output vectors O. Label the computa-
tion by which the SRN converts input sequences of S into
responses in O as i, so that for s ∈ S \ ε, i(s) ∈ O is the
output that the network produces given the sequence of in-
puts s. The structure of the SRN mediates between the input
sequences and the produced output. An alternative to taking
a simple recurrent network’s representation of input word w
to be the regions of hidden weight space that usually result
from w is to consider the representation to be the action that
the network takes in response to w. In particular, I consider
the representation of phrase s to be just that function which
describes how input s transforms the current state.

Where −→
t ∈ S is a single input vector (corresponding to

a ‘word’), consider the function r′ : S × H −→ H , defined
as

r′(s,�h) =
{

�h if s = ε

r′(u,
−−−−−→
Sigmoid(C · �h + Win · �t) if s = �t.u

The meaning of r′ is quite straightforward: given an initial
vector of context layer values, �h, and an input sequence s,
r′(s,�h) is equal to the hidden-layer vector after s is pro-
cessed through it. Next define r to be the curry of r′ over s,
so that r(s) = r′(s,�h). r(s) then denotes a function from H
to H . For convenience, r(s) can be rewritten rs. Then rs is
the function which reflects the dispositional response of the
Elman network to input s under arbitrary initial context. Let
R = {r}s∈S , so that r : S −→ R. Then the response of the
system is easily generated from rs(�h) by the function

response : R −→ O, response(X) = −−−−−→
Sigmoid(Wout·X(�0))

2For convenience, I will augment the lexicon with an empty
input ε. This null value is not an all-zero input, but a non-input.
Processing an ε corresponds to just leaving the network alone. So
∀s ∈ S, s • ε = s.

rs is a representation function in the sense that it is a nat-
urally defined internal disposition that leads directly to the
system’s response for the input s. Furthermore, these func-
tions are classically compositional in that r is a homomor-
phism from S to R. For any single input, a = a • ε, note
that the system’s representation of that word is just the func-
tion ra(�h) = −−−−−→

Sigmoid(C · �h + Win · �t). Consequently,
ra•s = ra ◦ rs (where a is a single input word). If �h = �0,
then r′(s,�h) is the hidden layer after processing s from a
cleared context. Since for any given pair of sequences s, t
and a single input word a, it is clear that

rs ◦ ra•t = rs ◦ (ra ◦ rt)
= (rs ◦ ra) ◦ rt

= rs•a ◦ rt

we know by induction that rs ◦ rt = rs•t, and therefore
that the R under function composition is homomorphic to
S under concatenation. So R is a formally compositional
representation scheme defined by the weights of the SRN.

Representation as Disposition Function
It has been shown that the set of functions R is a formally
compositional set defined implicitly by an SRN. In order
to defend a claim that SRNs are themselves compositional,
it is necessary to argue further that R is a good candidate
for the role of the representational scheme of an SRN. I
do not intend to enter an already crowded debate in cog-
nitive science by trying to provide a general definition of
what counts as an agent ‘representing’ (see, for example,
Van Gelder, 1995 or Haugeland, 1985). Instead, I will point
to some commonly repeated intuitions about representation,
and show where functional representations do or do not em-
body these themes. I will focus on comparing and contrast-
ing my function-oriented notion of representations with the
usual hidden layer value interpretation. On the whole, dis-
position functions match prior intuitions quite well.

Representations are usually divided into tokens and types;
types encode system knowledge about a world property,
while the deployment of that knowledge is called a token.
The typical rendition of representation in (trained) SRNs
takes the token to be the value of the hidden-layer vector
after receiving a particular input word. Because prior con-
text may differ, different tokens representing a particular in-
put typically have similar but not identical values; the rep-
resentation type is identified with the general region of the
state-space where tokens of that input typically appear. Hier-
archical clustering is used to group similar vectors into rep-
resentation types, and to illustrate similarity among different
types.

Though the two interpretations seem quite different, the
functions advocated here are really a quite natural extention
of the usual definition of representation. Any function can
be viewed as an infinite collection of input-output pairs; the
system’s representation type for some input M is exactly the
collection of all possible pairs; the usual method considers
the representation type to be a sample of the range of this
function. Any particular token in the clustering view is just



the second half of the pair which the functional interpreta-
tion takes to be the representational unit. So by simply ex-
tending the usual method to include all possible, rather than
typical, previous input sequences (and therefore all achiev-
able hidden-layer states), and by including the input value
in the representation, one can move from the usual notion of
representation to the compositional functional notion. The
practical techniques which are typically used to define and
characterize representations, such as hierarchical clustering
and perhaps principle components analysis should be adapt-
able to a functional definition of representation. Since the
functional approach folds input values into the representa-
tion tokens, it is natural to distinguish between representa-
tions of individual words and whole phrases, and to com-
pare them directly. Though such analysis has not yet been
performed, it may suggest more novel analysis techniques.

A token pair describes which particular action is taken to
generate an output and therefore characterizes precisely the
state of affairs which mediates between inputs and outputs
in a system, which (on some accounts) is just what repre-
sentations are supposed to do (Markman & Dietrich 2000).
Furthermore, taking as the representation the full range of
potential responses of the network to an input matches an
intuition that processes, and not just structure, engage in
representing, and that representations in neural networks are
therefore active and not passive entities. Taking the action to
be an application of the dispositional response function also
allows us to consider the representation properties more for-
mally.

A system’s dispositional response is a concise way of
characterizing what the system knows about some input; this
knowledge is what declarative representations are intended
to capture. Rather than reflecting the knowledge encoded in
the weights, these tokens are directly built out of the knowl-
edge which the network employs in parsing a sequence in
a particular context. This knowledge is quite naturally de-
rived from the structure of the network; they do not employ
discontinuous conditionals, or any other complicated algo-
rithm, but instead simply multiply and add vectors (and ap-
ply the sigmoid squashing). Thus, no explicit decision is
ever made in their execution. Furthermore, composite rep-
resentations are derived (in the strong sense demanded by
Fodor & Lepore, 2002) from their constituent elements.

Since the functions in R represent types, any particular
application of the function is a tokening of that type. A rep-
resentation token is not therefore a member or part of the
enduring state of the system, but is instead something the
system does, in virtue of its knowledge about some partic-
ular input. Tokening a representation is applying an action-
type: the hidden-layer representation after hearing JLM is
just the residue of the active representation tokens. This
means that the composition presented here is destructive.
Because the space of hidden-layer units is typically very
large, each compound should usually be distinct, but it is
thoroughly possible that several different composite func-
tions will closely overlap in some region in the hidden-layer
space, in which case the exact constituents will be unrecov-
erable even in principle. This happens because the tokens
are actions; once an action is taken it is gone. Since the

composite representations are themselves actions (and there-
fore extended in time), their components need not be concur-
rently present.

Discussion
There are a number of different regularities which traffic
under the systematicity label; compositionality has gener-
ally been invoked as an explanation for these regularities.
I will very briefly mention a few such properties, and dis-
cuss implications for these arguments which result from a
disposition-function based account of representation.

When a new word is heard for the first time, it often can
be subsequently used appropriately not only in the context
in which it appeared, but in many widely different contexts.
Compositionality has often been invoked as an explanation
for such one-shot learning. Whether or not SRNs may be
made suitably systematic in their word acquisition (for hope-
ful signs that they may be, see Desai (2002a) or (2002b)),
it is clear that SRNs are not always by their nature capa-
ble of an appropriate amount of systematic generalization; if
they are formally compositional, then compositionality can-
not bear the weight of explaining one-shot learning.

An even more basic application of systematicity has to do
with novel arrangements of known words. A person who
understands the sentence JLM will typically have little dif-
ficulty understanding, on first hearing, the sentence MLJ .
This would be explained, the story goes, if the system uti-
lized the very same representations in understanding the lat-
ter sentence that it had shown mastery of by comprehend-
ing the former. Compositionality of representation would
explain an agent’s abilities because the same (known) repre-
sentations could be recombined in a novel order.

This story may be more complicated than it at first ap-
pears. The disposition functions which compose to form
the network’s representation of JLM will indeed be the
very same functions which make up MLJ , but neverthe-
less, there is no guarantee that a network which responds
appropriately to JLM will do so when given MLJ . There
is a difference between appropriate representation and ap-
propriate response: the latter constrains only the outputs in
particular seen cases, while the former means processing in
virtue of dispositionally correct intervening states. Since
the network does not have an unambiguous way of dividing
the representational burden of the compound phrase among
its constituent elements, even a network which has learned
JLM and represents it in virtue of its understanding of M ,
L, and J is likely to do so using non-robust representations
of those constituents. Representations robust to novel order-
ings likely result from specialized learning or input schemes,
but do not generally follow from nor obviously require com-
positional representations.

Another abberant property of this compositionality is that
it is associative (in the mathematical sense) and word-based.
There is no analogue here to the natural syntactic complex-
ity of language, e.g, words grouping to form intermediate
phrases and clauses, which are in their turn composed into
sentences. Since the suggested composition operator is as-
sociative, every conjunction of words has a valid represen-
tation in the network. Jackendoff’s (1983) conclusion that



“every major phrasal constituent in a sentence corresponds
to a conceptual constituent in the semantic structure of the
sentence” (p. 76) reflects an appealing intuition. The com-
positionality exhibited here is wholly unstructured, however.

By showing a notion of representation under which SRNs
are classically compositional, I do not intend to imply that
they are somehow mere implementations of classical sys-
tems. SRNs clearly differ from traditional symbolic ar-
chitectures in interesting and complicated ways. Rather,
I conclude that the interesting properties of SRNs do not
result from having context-sensitive representations, but
from some other factors, perhaps including active and non-
discrete representations, or holistic statistical methods for
learning and storing these representations, which allows the
modification of one function to affect all other representa-
tions.

Since SRNs do not generally exhibit the various regular-
ities known as systematicity, but appear to be classically
compositional, compositionality alone clearly does not ex-
plain systematicity. Which of the following two conclu-
sions to draw is perhaps a purely definitional issue: that
compositionality is not formally well characterized by ho-
momorphism, or that compositionality does not do much to
explain systematicity. Regardless of how the terminology
is carved, it is apparent that compositionality of represen-
tations (i.e., the property that representations of compound
facts are compounds of the representations of those facts)
does not provide the explanation of systematicities that it
has usually been accorded. What I think this means is that
these perplexing regularities require some more stringent
implementational explanation than compositionality, such as
a discreteness of the mechanisms underlying the symbols,
as has been suggested by Davies (1991), or possibly a par-
ticular requirement on compositionality, such as demanding
that it respect the apparent hierarchical structure of the tar-
get pattern. More analysis of particular networks is probably
needed to determine the actual conditions which will guar-
antee the appropriate regularities that are usually attributed
to compositionality.
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