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Abstract 

The ability to generate explanations plays a central role in 
human cognition.  Generating explanations requires a deep 
conceptual understanding of the domain in question and 
tremendous flexibility in the way concepts are accessed and 
used.  Together, these requirements constitute challenging 
design requirements for a model of explanation.  We describe 
our progress toward providing a such a model, based on the 
LISA model of analogical inference (Hummel & Holyoak, 
1997, 2003).  We augment LISA with a novel representation 
of causal relations, and with an ability to flexibly combine 
knowledge from multiple sources in LTM without falling 
victim to the type-token problem.  We demonstrate how the 
resulting model can serve as a starting point for an explicit 
process model of explanation. 
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Explanation and Understanding 

People are constantly seeking, generating and evaluating 

explanations (Keil, 2006; Sloman, 2005; Thagard, 1989).  

As anyone who has ever given an essay exam knows, the 

ability to explain is a powerful index of understanding.  

Explanation also plays a critical role in problem solving.  In 

order to solve an automotive problem, for example, it is first 

necessary to understand (i.e., explain) the nature of the 

problem. 

Although there exists a relatively rich literature on how 

people evaluate explanations (see Keil, 2006; Lombrozo and 

Carey, 2006; Thagard, 2001), comparatively little is known 

about how people generate them in the first place (for 

progress in this direction, see Ahn et al., 1987; Patalano, 

Chin-Parker & Ross, 2006; VanLehn, Jones & Chi, 1992; 

Vosniadou & Brewer, 1987).  This paper presents our early 

attempts to understand, at a detailed algorithmic level, the 

cognitive operations that underlie our ability to generate 

explanations.  As the empirical literature on this question is 

comparatively thin, our starting point is one of first 

principles: What do we know about how people generate 

explanations, and how can those facts constrain our 

modeling? 

We will assume that generating an explanation involves 

inferring a causal chain or tree leading from some 

hypothesized or believed initial state of affairs to the 

explanandum (Pearl, 2000; Sloman, 2005).  

One thing we know about inferring explanations is that 

explanation depends on our ability to flexibly access and 

apply our existing knowledge (Ahn et al., 1987; Vosniadou 

& Brewer, 1987).  The flexibility is central, as illustrated by 

an experiment by Patalano et al. (2006).  In one condition, 

Patalano et al. gave subjects a novel explanandum of the 

form “In the population as a whole, people tend to prefer 

Pepsi to Coke as often as they prefer Coke to Pepsi.  

However, ministers tend to prefer Coke over Pepsi,” and 

asked them to generate an explanation for this “fact”.  One 

of the explanations subjects typically generated took the 

general form: “Ministers tend to be conservative.  Perhaps 

the Coke Corporation supports conservative causes.”  This 

explanation reflects a combination of knowledge about 

ministers, corporations and the kinds of factors that can lead 

a person to prefer one product to another, and reflects 

tremendous flexibility in the way that knowledge is assessed 

and combined. 

 

Flexibility and Knowledge Representation 

  

The way we generate explanations suggests three kinds of 

flexibility in the representations and processes underlying 

those explanations.  The first is relational flexibility.  For 

example, one way to account for the “conservative causes” 

explanation above is to assume that the subject has some 

sort of knowledge structure specifying that if some person 

agrees with the political leanings of some company then, all 

other things being equal, that person will tend to prefer the 

products produced by that company.  Such a schema needs 

to be relationally flexible in the sense that it needs to be 

variablized (i.e., symbolic; see Hummel & Holyoak, 2003), 

so that, in the limit, it can be used to reason about any 

person, product and company.   

Second, explanation requires semantic flexibility so that it 

can exploit partial but imperfect matches between the 

objects and relations composing an explanandum and the 

objects and relations encoded in potentially relevant 

schemas or examples in long-term memory (LTM).  For 

example, imagine that our experimental subject did not have 

a “product preference schema” but did know of a prior case 

in which her friend preferred to use a particular cell phone 

company because of their liberal-leaning political activism.  



The subject could use this prior example as a source analog 

(Gentner, 1983; Holyoak & Thagard, 1989) with which to 

reason about the situation with ministers and Coke; but they 

could only do so if their mental representations of the 

situations allowed them to tolerate the semantic differences 

between their friend, the cell phone company and the cell 

phone service on the one hand and ministers, the Coca Cola 

Corporation and Coke on the other (Hummel & Holyoak, 

1997). 

These same kinds of flexibility also characterize human 

reasoning using analogies, schemas and rules (Holyoak & 

Thagard, 1989, 1995; Hummel & Holyoak, 1997, 2003).  

Accordingly, as elaborated below, the point of departure for 

our attempt to simulate explanation is a model of analogy, 

relational reasoning and schema induction—namely, 

Hummel and Holyoak’s (1997, 2003) LISA model. 

 

Beyond the Flexibility of Analogy    Explanation also 

requires a third kind of flexibility not exhibited by extant 

models of analogy (including LISA).  Analogy is typically 

construed as a process of reasoning about a novel target 

problem or domain in terms of a familiar source (or base) 

domain (Gentner, 1983; Gick & Holyoak, 1983; Holyoak & 

Thagard, 1989).  For example, in the analogy between the 

solar system and the Rutherford model of the atom, the solar 

system serves as the source, guiding inferences about the 

atom as the target (e.g., the inference that some force must 

cause the electrons to orbit the nucleus). Importantly, both 

in this example and in extant models of analogy, the 

mapping and inference are driven from a single source to a 

single target.  This restriction that one source maps to one 

target greatly reduces the complexity of analogical 

reasoning by placing strong constraints on the critical step 

of analogical mapping—the process of discovering the 

correspondences between the elements of the source and 

those of the target. 

Things are not so tidy in the case of explanation.  

Generating an explanation often requires integrating 

information from multiple sources in LTM.  Returning to 

our ministers and Coke example, the reasoner likely has one 

schema (or set of schemas) describing the properties of 

ministers, another schema describing the conditions under 

which one’s political leanings might lead to particular 

product preferences, and still a third schema describing what 

it means for one person (e.g., a minister) to agree with 

another person or entity (e.g., the Coke Corporation). In 

order to generate the “supports conservative causes” 

explanation for why ministers might prefer Coke, it is 

necessary to integrate these diverse sources of knowledge, 

somehow keeping track of what corresponds to what within 

and between the explanandum and the various schemas. 

The Type-Token Problem  Integrating multiple sources of 
information in the service of explanation thus requires 
solving a variant of the type-token problem in perception 
and cognition—specifically, the problem of knowing 
whether two or more representational elements (tokens) 
have the same referent (i.e., object or type in the world).  

Extant models of analogy (including SME, Falkenhainer, 
Forbus & Gentner, 1989; ACME, Holyoak & Thagard, 
1989; LISA, Hummel & Holyoak, 1997, 2003; and CAB, 
Larkey & Love, 2002) solve this problem by (a) designating 
one token per element (object or relation) in each analog 
(source or target), (b) mapping exactly one source onto 
exactly one target, (c) restricting analogical mappings to 
tokens in separate analogs (e.g., tokens in the source can 
map to tokens in the target but not to other tokens in the 
source) and (d) imposing a (more or less strict) 1:1 mapping 
constraint such that each token in one analog may map to at 
most one unit in the other.  These constraints avoid the type-
token problem by making it unnecessary to worry about 
whether different tokens refer to the same entity: tokens 
across analogs either map or not as dictated by the structure 
of the analogy.  However, the reason they work is precisely 
because one target is mapped to exactly one source at a 
time. 

These constraints cease to be adequate when a single 

target (e.g., an explanandum) needs to map to multiple 

sources (e.g., schemas) in LTM.  In the minister example, 

the token representing the minister in the explanandum must 

map to one token in, for example, the “product-preference” 

schema and to a different token in the “agreement” schema: 

Given this, how is the system to “know” that the token in 

the product preference schema that maps to the minister has 

the same referent as the token in the agreement schema that 

maps to the minister?  The difficulty of this problem is both 

exacerbated and illustrated by the fact that, in some other 

explanation, these tokens might not have the same referent. 

In short, the 1:1 mapping constraint, which is necessary 

to make analogical mappings in a psychologically realistic 

way, must be violable when integrating information from 

multiple information sources. As elaborated below, we 

present a solution to this problem that works by serializing 

the mapping of the explanandum onto the various schemas 

(and other knowledge structures) in LTM: Effectively, this 

approach “solves” the type-token problem by replacing the 

question Do these tokens refer to the same entity? with the 

question Do these tokens map to one another in the current 

context? 

 

A Process Model of Explanation 
 

Knowledge Representation As noted previously, the point 
of departure for our effort is Hummel and Holyoak’s (1997, 
2003) LISA model of analogical reasoning.  LISA is an 
artificial neural network whose representations and 
processes are rendered symbolic (i.e., explicitly relational) 
by virtue of its solution to the problem of dynamically 
binding relational roles to their fillers. LISA represents 
propositions (such as prefer (ministers, Coke)) using a 
hierarchy of distributed and progressively more localist 
codes (Figure 1).  At the bottom of the hierarchy objects and 
relational roles are represented as patterns of activation 
distributed over units coding for their semantic features 
(small circles in Figure 1).  



At the next level, objects and roles are represented by 

localist object and role units (large circles and triangles in 

Figure 1), which share bi-directional excitatory connections 

with the semantic units describing them.  For example, the 

object unit minister might share connections with semantics 

such as human, adult, religious, etc.  Role-filler bindings are 

encoded by sub-proposition units (SPs; rectangles in Figure 

1), which share bi-directional excitatory connections with 

the object and role units they bind together.  At the top of 

the hierarchy, proposition (P) units (ovals in Figure 1) bind 

individual role bindings (SPs) together into complete 

propositions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Representation of prefer (ministers, Coke) in 

LISA.  Small circles are semantic units; triangles are 

role units; large circles are object units; rectangles are 

SPs and the oval is a P unit.  Lines are excitatory 

connections.  See text for details. 

 

The hierarchy depicted in Figure 1 represents propositions 

both in LISA’s LTM and, when a proposition becomes 

active, in its working memory (WM).  In LTM, a 

proposition’s role bindings are represented strictly by the 

conjunctive SPs.  However, this kind of conjunctive code is 

inadequate as a general solution to the binding problem  in 

WM (Hummel & Holyoak, 1997).  When a proposition 

becomes active (i.e., enters WM) its role bindings are 

represented both conjunctively by the SPs and dynamically, 

by synchrony of firing: The separate SPs composing a 

proposition inhibit one another, and so fire out of synchrony 

with one another.  As a result, relational roles fire in 

synchrony with the fillers to which they are bound, and 

separate role-filler bindings firing out of synchrony with one 

another.  The result, on the semantic units, is a collection of 

mutually desynchronized distributed patterns of activation, 

one for each role-filler binding. These representations have 

the property that they represent relational roles and their 

arguments independently of one another (i.e., the same units 

will represent a given object or relational role, regardless of 

the role or object to which it happens to be bound at the 

time) and simultaneously specify how roles are bound to 

their fillers.  They are therefore both distributed and 

explicitly relational, i.e., symbolic (see Hummel & Holyoak, 

1997). 

LISA’s knowledge representations are compartmentalized 

into “analogs”: Collections of propositions that together 

represent individual events, stories, concepts or schemas.  

Within an analog, a given object or role is represented by a 

single unit across all proposition in which it plays a role. 

However, separate analogs do not share object, role, SP or P 

units: A given object or role is represented by one unit in 

one analog and by a different unit in another analog.  As 

such, object and role units do not represent objects or roles 

in the abstract; they represent specific instantiations or 

tokens of those objects or roles in specific analogs.  (The 

same is true of SP and P units.)  As such, we will refer to 

object, role, SP and P units collectively as token units.  In 

contrast to the token units, all analogs connect to the same 

pool of semantic units.  The semantic units thus represent 

the abstract types to which the tokens refer. (Albeit crucial 

for the various functions LISA performs, this division 

between type and token units is not sufficient, by itself, to 

solve the type-token problem described above; indeed, it 

causes that problem.)  

For the purposes of LISA’s operation, analogs are divided 

into three sets: a driver and one or more recipients are 

assumed to reside in active memory (a primed subset of 

LTM that is larger than WM; Cowan, 2001); the remainder 

are dormant in LTM.  All of LISA’s operations are 

controlled by the driver.  One (or at most three) at a time, 

propositions in the driver become active and enter the phase 

set: The set of active but mutually de-synchronized role 

bindings.  The phase set is LISA’s WM, and like human 

WM (see Cowan, 2001), is limited to at most 4-6 role 

bindings at a time.  The patterns of activation that 

propositions in the phase set generate on the semantic units 

excite other propositions in LISA’s LTM (for memory 

retrieval) and in its active memory (for mapping, analogical 

inference and schema induction) and thereby bootstrap all 

the functions LISA performs. 

 

Processing in LISA LISA performs memory retrieval as a 
form of guided pattern recognition (Hummel & Holyoak, 
1997): Patterns of activation generated on the semantic units 
by one proposition tend to activate other, similar, 
propositions in LTM, retrieving them into active memory.  
For example, the patterns activated by the proposition prefer 
(ministers, Coke) might activate the proposition prefer 
(person, product) in the “product preference” schema.   

Augmented with a simple algorithm for learning which 

structures in the recipient tend to become active in response 

to which in the driver, LISA’s memory retrieval algorithm 

serves as a basis for analogical mapping: In this trivial 

analogy, ministers bound to prefer-agent activates person 

bound to prefer-agent in the schema and Coke bound to 

preferred-object activates product bound to preferred-

object; LISA thus maps ministers to person and Coke to 

product.  The same is true for corresponding roles of the 

prefer relation, and the SP and P units binding those roles to 

their fillers.   

LISA represents these correspondences as learned 

mapping connections between corresponding structures 

prefer (ministers, Coke) 

minister Coke p1 p2 



(e.g., between ministers and person, etc.). These 

connections serve not only to represent the learned 

mappings, but also to constrain future mappings: If LISA 

maps ministers to person in the context of prefer, then the 

resulting mapping connection will cause ministers to 

directly activate (and therefore map to) person in 

subsequent propositions.  The learned mapping connections 

also play a central role in LISA’s capacity for self-

supervised learning—the core of its algorithm for analogical 

inference and schema induction (Hummel & Holyoak, 

2003).  

One of the main adaptive functions of analogical thinking 

is that it supports analogical inferences a.k.a. relational 

generalization: inferences and generalizations based on the 

relational roles that objects play, rather than just the literal 

similarity of the objects themselves. LISA’s mapping 

algorithm is capable of exploiting the full power of 

relational thinking, mapping utterly dissimilar objects (and 

roles) to one another provided they are bound to similar 

roles (or, in the case of dissimilar roles, are bound to objects 

that are known to correspond based on an earlier mapping).  

In the case of the current example, once LISA maps 

ministers to person and Coke to product (along with their 

roles), it is then prepared to “copy with substitution and 

generation” (Holyoak & Thagard, 1989) the structure of the 

entire “product preference schema” over onto the “minister 

and Coke” situation, effectively filling in a (partial) 

explanation for why ministers prefer Coke.  Through a 

novel process of repeated cycles of retrieval, mapping, and 

inference (elaborated below), the model is able to overcome 

the 1:1 mapping constraint to integrate multiple sources of 

knowledge through sequential analogical inference, and 

effectively side-step the type-token problem. 

Finally, augmented with a simple algorithm for 

intersection discovery, LISA’s algorithm for analogical 

inference also provides a very natural account of the 

induction of abstract schemas (such as the product 

preference schema) from concrete examples (such as the 

minister and Coke example and the cell phone example) 

(Hummel & Holyoak, 2003). 

LISA’s knowledge representations (“LISAese”), along 

with its algorithms for memory retrieval, mapping, inference 

and schema induction, provide a natural account of roughly 

50 phenomena in the literature on analogical thinking, as 

well as 15 or more in cognitive development (see Doumas, 

et al., 2008; Hummel and Holyoak, 1997, 2003; Hummel & 

Ross, 2006; Morrison et al., 2004; Richland et al., 2006; 

Viskontas et al., 2004).  These abilities derive from the fact 

that LISAese simultaneously enjoys the flexibility of 

distributed representations and the relational sophistication 

of symbolic representations. As such, they are an ideal 

platform on which to build a model of understanding and 

explanation. 

Representing Causal Relations 

Consider a set of propositions that together might form a 

“product preference” schema: 

P1: agree-with (person, corporation) 

P2: produce (corporation, product) 

P3: prefer (person, product) 

and another set of propositions that might form an 

“agreement” schema: 

P1: believe (person, some-proposition) 

P2: believe (entity, some-proposition) 

P3: agree-with (person, entity) 

(Recall that, because they reside in separate “analogs [in this 

case, schemas], person in the product preference schema is a 

different token than person in the agreement schema, even 

though they have the same name.) Assuming these 

propositions constitute reasonable caricatures of the 

preference and agreement schemas, then they are clearly 

causally related to one another.  Specifically, P1 and P2 

(agree-with and produce) in the preference schema jointly 

cause P3 (prefer), and P1 and P2 (believe) in the agreement 

schema jointly cause P3 (agree-with).  How should these 

causal relations be represented for the purposes of 

generating explanations? 

One straightforward approach would be to represent them 

as explicit propositions, for example: 

P4: and (P1, P2) 

P5: cause (P4, P3) 

LISAese makes it possible for one proposition to take 

another as an argument, so this approach to representing the 

causal relations in a schema is perfectly plausible; and in 

some circumstances (e.g., when thinking explicitly enough 

about a causal relation to write about it), people can 

undoubtedly do so.  However, LISAese assumes that 

explicit propositions are represented in WM and therefore 

consume finite WM capacity.  As such, we suggest that this 

approach is likely to be too unwieldy to serve as a general 

solution to the problem of representing causal relations for 

the purposes of explanation: Note that P4 and P5 

collectively introduce four additional role bindings into each 

schema; that’s eight additional role bindings that would 

need to occupy slots (although not all at the same time) in 

our intrinsically capacity-limited WM.  It seems intuitive 

that, although we are aware of the causal relations, and can 

name them when asked, we do not necessarily think so 

explicitly about them in the service of generating an 

explanation. 

Alternatively, we could represent causal relations in an 

entirely implicit fashion, for example as associative links 

whose weights indicate causal strength.  This approach 

would eliminate the WM problem caused by the explicit 

propositions, but it goes too far in the opposite direction, 

representing the causal relations only as implicit links rather 

than explicit structures that can be activated, analogically 

mapped and ultimately inferred (e.g., by analogical 

inference) into the emerging explanation.  

We propose a third alternative: To represent groups of 

related propositions by connecting them to units that 

explicitly represent those groups (diamonds in Figure 2).  

For example, the fact that P1 and P2 in the agreement 

schema (the believe relations) jointly cause P3 (the agree 



relation) can be represented by connecting P1 and P2 to a 

single group unit, and tagging that group as a cause group 

by connecting it to semantic units representing cause.  

Likewise, the fact that P3 is an effect can be represented by 

connecting it to a group unit, and connecting that unit to 

semantic units representing effect.  Finally, the fact that the 

P1/P2 group is the cause of the P3 group can be represented 

by connecting the cause and effect group units to a higher-

level cause-effect (CE) group unit.  This latter unit 

represents the strength of the causal relation by connecting 

to semantic units coding for that strength.  

 
Figure 2.  Illustration of group units (diamonds) as a 

representation of causal relations.  Ovals are P units, 

rectangles are SPs.  Objects, roles and semantic units 

are not shown.  The upper-most diamond is a cause-

effect group (CE); the groups below it to its left is a 

cause group (C); the one below it to its right is an effect 

group (E).  P units are numbered as in the text above.  

 

The resulting representation is more explicit than 

simply representing causal relations as associative links: 

causal relations are represented as collections of units that 

can be activated, mapped and inferred.  But at the same 

time, it is less WM-demanding than explicit propositions: 

group units incur no additional WM burden over and above 

the propositions they link as causally related.
1
   

Group units also serve to organize LISA’s knowledge into 

meaningful packages (including but not limited to causes, 

effects, and cause-effect pairings). As a result, they play a 

central role in determining which propositions are likely to 

become active in close temporal proximity (i.e., what LISA 

is likely to “think about” in what order; see Hummel & 

Holyoak, 1997, 2003).  Specifically, LISA’s processing is 

constrained to activate propositions in group-based sets (in 

the driver), and it is constrained to retrieve propositions 

from LTM in group-based sets.  As a result, if LISA is 

reminded of a familiar effect (e.g., some novel explanandum 

activates a proposition in LTM connected to an effect 

group), then it will tend to be reminded of the cause as well 

(via the shared CE group).  In other words, group units not 

                                                             
1
 Group units reside at different levels of the 

representational hierarchy than P, SP object and role units.  

As a result, they can be coactive with those units without 

having to occupy different slots in WM (see Doumas, et al., 

2008; Hummel & Holyoak, 1997, 2003). 

only play an important role in LISA’s representation of 

causal relations; they also play a key role in metacognitive 

aspects of its operation, controlling what LISA “thinks 

about” together, and controlling what it is reminded of 

together. 

Flow of Control 

Armed with group-augmented LISAese, LISA’s 

algorithm for explanation operates according to a retrieve-

map-infer cycle that is applied iteratively to construct a 

causal chain representing an explanation of the 

explanandum. (The same retrieve-map-infer process also 

characterizes reasoning by analogy [see, e.g., Gentner, 

1983]; but in analogical reasoning, it is performed only 

once, not iteratively.) This process is initiated by placing the 

proposition(s) representing the explanandum into the driver, 

connected to an isolated effect group (i.e., an effect group 

with no parent CE group and no sibling cause group). All of 

LISA’s other knowledge resides dormant in LTM. In the 

case of our ministers and Coke example, the driver would 

contain the proposition prefer (ministers, Coke) connected 

to an effect group; LTM would contain all of LISA’s other 

knowledge, including (most crucially for the current 

example) the preference and agreement schemas.  

LISA initiates the explanation process by activating the 

proposition (and the effect group) in the attempt to retrieve a 

relevant schema or prior example from LTM. In the case of 

the current example, the isolated effect group activates the 

effect semantic, and the prefer proposition activates the 

semantics of ministers+prefer-agent and Coke+preferred-

object (the semantics of ministers fire in synchrony with 

those of prefer-agent and out of synchrony with those of 

Coke and preferred-object, but all these units fire in 

synchrony with effect).  The resulting patterns of activation 

on the semantic units represent the query Why do ministers 

prefer Coke?, and tend to activate effect groups (via the 

effect semantic) connected to semantically similar 

propositions in LTM (via the semantics connected to the 

proposition). 

Groups in LTM are retrieved into active memory 

stochastically as a function of how active they become in 

response to the patterns generated by the driver.  In the 

current example, P3 in the preference schema, prefer 

(person, product), is likely to be retrieved.  Retrieval is 

group-based, with a bias in favor of retrieving higher-level 

groups over lower-level groups (e.g., CE groups rather than 

isolated cause or effect groups).   As a result, the activation 

of P3 in the preference schema is likely to result in the 

retrieval of the whole product preference schema.  (For 

convenience, we illustrate flow of control in LISA using the 

preference and agreement schemas, but the logic would be 

exactly the same if, instead of schemas, LISA had analogous 

specific examples, e.g., the cell phone example instead of 

the preference schema.) 

If LISA fails to retrieve a CE group from LTM, then it 

halts, declaring the explanation complete.  (If the resulting 

explanation is the empty set, then LISA’s answer is 



effectively “I don’t know.”)  If it succeeds in retrieving a 

CE group, then it places a proxy of that group into a 

workspace (i.e., it copies the units comprising the group into 

a target analog; retrieval is thus a matter of activation and 

proxy creation rather than simply activating a structure in 

LTM) and maps the elements of the explanandum onto the 

proxy of the CE group, for example, mapping ministers onto 

person, Coke onto product, and prefer onto prefer (along 

with their SPs, P units and effect groups). 

The model next makes the workspace the driver and the 

explanandum the recipient and, using analogical inference 

(i.e., self-supervised learning; Hummel & Holyoak, 2003), 

infers the missing elements in the explanantion. In this case, 

it would infer: 

P2: agree-with (ministers, corporation) 

P3: produce (corporation, Coke), 

connecting both P2 and P3 to a cause group, and connecting 

both that cause group and the existing effect group 

(containing P1: prefer (ministers, Coke)) to a CE group. 

LISA’s explanation now consists of the hypothesis 

“ministers prefer Coke because they agree with the 

corporation that makes Coke.” 

Finally, LISA attaches both P2 (agree-with) and P3 

(produce) to their own effect groups, turns control back over 

to the explanandum (which is now an emerging explanation) 

and starts the whole cycle over again.  Attaching P2 and P3 

to effect groups is LISA’s way of seeking new causes to 

explain these facts: Why do ministers agree with the Coke 

corporation? (P2) and (less sensibly) Why does the Coke 

corporation produce Coke? (P3). When the effect group 

connected to P2: agree-with (ministers, corporation) is used 

to drive retrieval, the result is very likely to be retrieval of 

the agreement schema (or an analogous specific example), 

in which case the same processes described above augment 

the explanation with the statements 

P4: believe (ministers, some-proposition) 

P5: believe (corporation, some-proposition), 

connecting both P4 and P5 to a cause group linked via a CE 

group to the effect group connected to P3 (agree-with). 

In the current instantiation of the model, this processes is 

repeated until the retrieval phase fails to retrieve a CE 

group.  In the case of the current example, that will happen 

when LISA tries to retrieve a cause group describing why 

the corporation produces Coke (i.e., P3: produce 

(corporation, Coke)). It also happens with a small 

probability when other propositions fire (due to the 

stochastic algorithm for retrieving groups from LTM). This 

“explanation is done when retrieval fails” approach is a 

clear limitation of the model in its current state.  Developing 

more intelligent halting criteria is the subject of ongoing 

research.   

What is important to point out in the preceding 

description of the flow of control is the model’s solution to 

the type-token problem: LISA maps ministers to person in 

the context of the preference schema, and then maps 

ministers to person (a completely different token) in the 

agreement schema.  Seemingly (although not in fact) more 

impressively, it inferred corporation from the preference 

schema into the explanadum and then correctly mapped 

corporation onto entity in the agreement schema. How did it 

“know” that corporation in the preference schema had the 

same referent as entity in the agreement schema, or that 

person in the preference schema had the same referent as 

person in the agreement schema? The answer is that it did 

not know, and it did not have to. Rather than having to make 

the impossible decision of whether two tokens have the 

same referent, LISA’s iterative retrieve-map-infer algorithm 

need only decide whether two units correspond, that is, map 

to one another, within the confines of the current retrieve-

map-infer cycle.  In so doing, it side-steps the question of 

whether the tokens “have the same referent”.  In short, LISA 

replaces the question “are they the same?” with the question 

“do they correspond?” and in so doing provides an effective 

solution to one particularly thorny variant of the type-token 

problem.  Its ability to do so is a cornerstone of its ability to 

integrate multiple diverse sources of knowledge in LTM in 

the service of explaining a novel explanandum. 

Simulations 

The model described thus far, which consists of LISA 

augmented with units to represent causal groups and 

routines for using those groups to control LISA’s meta-

cognition, is still in an early stage of development.  In order 

to test its potential, we ran several simulations based on an 

elaboration of the minister/Coke example given previously.  

In a set of pilot simulations, the explanandum was the 

statement that ministers prefer Coke to Pepsi and we placed 

several relevant facts and schemas into LISA’s LTM:  (1) A 

(partial) preference schema stated that a person may prefer x 

to y either because they like x or because they dislike y.  (2) 

A Coke-and-cocaine schema specified that Coke used to 

contain cocaine, rendering it and the Coke corporation 

“immoral”.  (3) A minister schema specified various 

properties of ministers, including their distaste for 

“immoral” things.  (4) An agreement schema contained 

several statements specifying the conditions under which a 

person might like or dislike a product by virtue of their 

agreeing or disagreeing with the corporation that makes that 

product.  And (5) a support schema specified how 

supporting common or inconsistent causes can cause a 

person or entity to agree or disagree with another person or 

entity.   We also seeded its LTM with several irrelevant 

facts, so that we could evaluate the selectivity of the 

retrieval process.  

Although we did not quantify the results of the pilot 

simulations, a typical result was an explanation such as: 

 

P1: prefer (ministers, Coke)  (the given explanandum) 

P2: believe (ministers, some-proposition) 

P3: believe (corporation, some-proposition) 

P4: agree-with (ministers, corporation) 

P5: produce (corporation, Coke) 

   cause (P2, P3) (P4) 

cause (P4, P5) (P1) 



 

where “cause” is shorthand for a collection of cause, effect 

and CE groups; the first pair of parentheses on each line 

enclose the P units connected to the cause group and the 

second pair enclose the propositions connected to the effect 

group.  In other words, LISA inferred that ministers have 

some belief (e.g., some political belief) (P2), the corporation 

that makes Coke (P5) has that same belief (P3), these facts 

together cause the minister to agree with the corporation 

(cause (P2, P3) (P4)), and that this agreement, along with 

the fact that the company produces Coke, causes the 

ministers to prefer Coke (cause (P4, P5) (P1))). 

This explanation represents the result of the majority of 

the pilot runs.  Occasionally, other results obtained.   

The model sometimes produced a truncated 

“explanation”, in which the ministers are assumed to agree 

with the Coke corporation, but the model failed to recognize 

that they share views as a result. This explanation obtains 

when the explanandum, prefer (ministers, Coke), retrieves 

the preference schema on the first retrieve-map-infer cycle, 

but fails to retrieve anything on the next cycle.   

A second result obtains when the explanandum retrieves 

nothing even on its first retrieval cycle.  In this case, the 

model halts without generating any explanation at all 

(effectively saying, “I don’t know”). 

 Finally, the model occasionally retrieves the agreement 

schema (rather than the preference schema) on the first 

retrieval attempt.  In this case, because analogical mappings 

are relationally flexible, ministers maps to person, and Coke 

maps successfully (but nonsensically) to entity. This 

particular mapping pattern is based on the slight semantic 

overlap between ministers and person (both are connected 

to the semantic human).  In this case, the model generates 

the nonsensical “explanation”: 

P1: prefer (ministers, Coke)  (the given explanandum) 

P2: believe (ministers, some-proposition) 

P3: believe (Coke, some-proposition) 

In no cases did the model retrieve irrelevant information 

from LTM, illustrating that the algorithm is capable of 

selectively retrieving and mapping only potentially 

situation-relevant information. 

In order to more precisely quantify the model’s behavior, 

we also ran a suite of 50 simulations in which the 

exaplanandum was the statement “ministers prefer Pepsi”.  

On 9 of these runs, the model produced no explanations, 

effectively saying “I don’t know”.  On an additional 4 

simulations, it produced incoherent explanations, for 

example, consisting of isolated facts not connected by 

causal relations.  The remaining 37 runs resulted in 

coherent, causally-connected explanations.  Of these, 15 

contained three causal links (e.g., “ministers prefer Pepsi to 

Coke because they like Pepsi; they like Pepsi because they 

agree with the Pepsi Corporation; and they agree with 

PepsiCo because they both support some cause”).  The 

remaining 22 explanations were of length two (e.g., 

“ministers prefer Pepsi to Coke because they dislike Coke; 

they dislike Coke because Coke is immoral”).  

 

Discussion 

We described a process model of how people generate 

explanations of events and “facts”, including novel ones 

(such as “ministers prefer Coke”) that require the reasoner 

to integrate multiple sources of knowledge in LTM.  The 

model is based on a psychological model of analogy 

(Hummel & Holyoak’s, 1997, 2003, LISA model), 

reflecting our assumption that many of the core processes of 

explanation are also core processes of analogy making.   

However, modeling explanation necessitates going 

beyond modeling analogy in at least two important respects: 

First, explanation, much more than analogy, depends on an 

understanding and an appropriate representation of causal 

relations.  We model the representation of causal relations 

using units representing groups of propositions (and other 

groups).  This representational format is more explicit than 

simple associative links between causes and effects (e.g., as 

in Bayesian models; Pearle, 2000; Tenenbaum, Griffiths, & 

Kemp, 2006), but less explicit than propositional statements 

about cause and effect relations.  It permits the model to use 

cause, effect and cause-effect (CE) groups as units of both 

cognitive control and memory retrieval. 

Second, explanation, unlike analogy, often requires the 

reasoner to integrate in processing multiple chunks of 

knowledge from diverse sources in LTM, which in turn 

requires a resolution of a difficult variant of the type-token 

problem, namely, the problem of knowing when different 

tokens refer to the same entity. We resolve this difficulty, 

not by solving it outright, but by replacing the question “are 

these the same” with the question “do these correspond?” 

Preliminary simulation results suggest that the approach is 

promising as general way to understand the process of 

explanation, and indeed, the problem of understanding more 

broadly. 

That said, the model is in an early stage of development, 

and many problems remain to be solved before we have a 

complete (much less correct) process model of explanation. 

First, we must address the problem of how a human 

reasoner knows when an explanation is complete. In the 

current version of the model, this decision is based strictly 

on the failure to retrieve additional causes from LTM. This 

is clearly incomplete, but what is right is harder to say. This 

question is a subject of ongoing research. Second, we must 

address the problem of explanation evaluation (for progress 

in this direction, see Thagard, 2001).  One of the hard 

problems to be solved in this domain is contradiction 

detection: How does the cognitive architecture know when 

it has postulated something just plain stupid in the process 

of generating an explanation?  Third, we must include a role 

for elaboration in explanation: in our example problem, for 

instance, the model is given the knowledge that ministers 

are politically conservative.  Nevertheless, the model never 

suggests that the source of agreement between the Coke 

corporation and the ministers is one of conservative values.  

Such elaboration is not part of the causal chain approach 



here, but seems to be a central component of explanation 

generation.   

These issues remain serious hurdles in our attempt to 

understand how people perform this most mundane and 

everyday task of explanation.  In the mean time, we believe 

our current work takes us at least one step closer to an 

answer to the difficult question of how we generate 

explanations. 
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