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Abstract 

The ability to generate explanations plays a central role in 
human cognition. Generating explanations requires a deep 
conceptual understanding of the domain in question and 
tremendous flexibility in the way concepts are accessed and 
used. Together, these requirements constitute challenging 
design requirements for a model of explanation.  We describe 
our progress toward providing a such a model, based on the 
LISA model of analogical inference (Hummel & Holyoak, 
1997, 2003). We augment LISA with a novel representation 
of causal relations, and with an ability to flexibly combine 
knowledge from multiple sources in LTM. This ability to 
combine knowledge from multiple sources in LTM entails 
relaxing the 1:1 mapping constraint, as a given structure in the 
explanandum will necessarily correspond to different 
structures across different sources. We demonstrate how the 
resulting model can serve as a starting point for an explicit 
process model of explanation. 
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Explanation and Understanding 
People constantly seek, generate and evaluate explanations 
(Keil, 2006; Sloman, 2005; Thagard, 1989). As anyone who 
has ever given an essay exam knows, the ability to explain 
is a powerful index of understanding. Explanation also plays 
a critical role in problem solving. In order to solve an 
automotive problem, for example, it is first necessary to 
understand (i.e., explain) the nature of the problem. 

Although there exists a relatively rich literature on how 
people evaluate explanations (see Keil, 2006; Lombrozo and 
Carey, 2006; Thagard, 2001), comparatively little is known 
about how we generate them in the first place (for progress 
in this direction, see Ahn et al., 1987; Patalano, Chin-Parker 
& Ross, 2006; VanLehn, Jones & Chi, 1992; Vosniadou & 
Brewer, 1987). This paper presents our early attempts to 
understand, at a detailed algorithmic level, the cognitive 
operations that underlie our ability to generate explanations. 
As the empirical literature on this question is comparatively 
thin, our starting point is one of first principles: What do we 
know about how people generate explanations, and how can 
those facts constrain our modeling? 

We will assume that generating an explanation involves 
inferring a causal chain or tree leading from some 
hypothesized or believed initial state of affairs to the 
explanandum (Pearl, 2000; Sloman, 2005).  

One thing we know about explanation is that it depends 
on our ability to flexibly access and apply our existing 
knowledge (Ahn et al., 1987; Vosniadou & Brewer, 1987). 
This flexibility is central, as illustrated by an experiment by 
Patalano et al. (2006). In one condition, Patalano et al. gave 
subjects a novel explanandum of the form “In the 
population as a whole, people tend to prefer Pepsi to Coke 
as often as they prefer Coke to Pepsi. However, ministers 
tend to prefer Coke over Pepsi,” and asked them to generate 
an explanation for this “fact”. One of the explanations 
subjects typically generated took the general form: 
“Ministers tend to be conservative. Perhaps the Coke 
Corporation supports conservative causes.” This explanation 
reflects a combination of knowledge about ministers, 
corporations and the kinds of factors that can lead a person 
to prefer one product to another, and reflects tremendous 
flexibility in the way that knowledge is assessed and 
combined. 

Flexibility and Knowledge Representation 
  
The way we generate explanations suggests three kinds of 
flexibility in the representations and processes underlying 
those explanations. The first is relational flexibility. For 
example, one way to account for the “conservative causes” 
explanation above is to assume that the subject has some 
sort of knowledge structure specifying that if some person 
agrees with the political leanings of some company then, all 
other things being equal, that person will tend to prefer the 
products produced by that company. Such a schema needs 
to be relationally flexible in the sense that it needs to be 
variablized (i.e., symbolic; see Hummel & Holyoak, 2003), 
so that, in the limit, it can be used to reason about any 
person, product and company.   

Second, explanation requires semantic flexibility so that it 
can exploit partial but imperfect matches between the 
objects and relations composing an explanandum and the 
objects and relations encoded in potentially relevant 
schemas or examples in long-term memory (LTM). For 
example, imagine that our experimental subject did not have 
a “product preference schema” but did know of a prior case 
in which her friend preferred to use a particular cell phone 
company because of their liberal-leaning political activism. 



The subject could use this prior example as a source analog 
(Gentner, 1983; Holyoak & Thagard, 1989) with which to 
reason about the situation with ministers and Coke; but they 
could only do so if their mental representations of the 
situations allowed them to tolerate the semantic differences 
between their friend, the cell phone company and the cell 
phone service on the one hand and ministers, the Coca Cola 
Corporation and Coke on the other (Hummel & Holyoak, 
1997). 

These same kinds of flexibility also characterize human 
reasoning using analogies, schemas and rules (Holyoak & 
Thagard, 1989, 1995; Hummel & Holyoak, 1997, 2003).  
Accordingly, as elaborated below, the point of departure for 
our attempt to simulate explanation is a model of analogy, 
relational reasoning and schema induction—namely, 
Hummel and Holyoak’s (1997, 2003) LISA model. 

 
Beyond the Flexibility of Analogy    Explanation also 
requires a third kind of flexibility not exhibited by extant 
models of analogy (including LISA). Analogy is typically 
construed as a process of reasoning about a novel target 
problem or domain in terms of a familiar source (or base) 
domain (Gentner, 1983; Gick & Holyoak, 1983; Holyoak & 
Thagard, 1989). For example, in the analogy between the 
solar system and the Rutherford model of the atom, the solar 
system serves as the source, guiding inferences about the 
atom as the target (e.g., the inference that some force must 
cause the electrons to orbit the nucleus). Importantly, both 
in this example and in extant models of analogy, the 
mapping and inference are driven from a single source to a 
single target. The restriction that one source maps to one 
target greatly reduces the complexity of analogical 
reasoning by placing strong constraints on the critical step 
of analogical mapping—the process of discovering the 
correspondences between the elements of the source and 
those of the target. In particular, it makes it possible to 
impose a 1:1 constraint on the mapping process such that 
each structure (e.g., proposition, object or relation) in one 
analog is allowed to map to at most one structure in the 
other. Without this 1:1 mapping constraint, the problem of 
analogical mapping would be hopelessly underconstrained 
(see, e.g., Falkenhainer et al., 1989; Holyoak & Thagard, 
1989). 

Things are not so tidy in the case of explanation. 
Generating an explanation often requires integrating 
information from multiple sources in LTM. Returning to our 
ministers and Coke example, the reasoner likely has one 
schema (or set of schemas) describing the properties of 
ministers, another schema describing the conditions under 
which one’s political leanings might lead to particular 
product preferences, and still a third schema describing what 
it means for one person (e.g., a minister) to agree with 
another person or entity (e.g., the Coke Corporation). In 
order to generate the “supports conservative causes” 
explanation for why ministers might prefer Coke, it is 
necessary to integrate these diverse sources of knowledge, 

somehow keeping track of what corresponds to what within 
and between the explanandum and the various schemas. 
The Type-Token Problem  Integrating multiple sources of 
information in the service of explanation thus requires 
solving a variant of the type-token problem in perception 
and cognition—specifically, the problem of knowing 
whether two or more representational elements (tokens) 
have the same referent (i.e., object or type in the world).  
Extant models of analogy (including SME, Falkenhainer, 
Forbus & Gentner, 1989; ACME, Holyoak & Thagard, 
1989; LISA, Hummel & Holyoak, 1997, 2003; and CAB, 
Larkey & Love, 2002) solve this problem by (a) designating 
one token per element (object or relation) in each analog 
(source or target), (b) mapping exactly one source onto 
exactly one target, and (c) honoring (more or less strictly) 
the 1:1 mapping constraint. These constraints solve—or at 
least avoid—the type-token problem by making it 
unnecessary to worry about whether different tokens refer to 
the same entity: tokens across analogs either map or not as 
dictated by the structure of the analogy. However, the 
reason they work is precisely because one target is mapped 
to exactly one source at a time. 

These constraints cease to be adequate when a single 
target (e.g., an explanandum) needs to map to multiple 
sources (e.g., schemas) in LTM. In the minister example, 
the token representing the minister in the explanandum must 
map to one token in, for example, the “product-preference” 
schema and to a different token in the “agreement” schema: 
Given this, how is the system to “know” that the token in 
the product preference schema that maps to the minister has 
the same referent as the token in the agreement schema that 
maps to the minister?  The difficulty of this problem is both 
exacerbated and illustrated by the fact that, in some other 
explanation, these tokens might not have the same referent. 

In short, the 1:1 mapping constraint, which is necessary 
to make analogical mapping computationally tractable, must 
be violated to integrate information from multiple sources. 
As elaborated below, we present a solution to this problem 
that works by serializing the mapping of the explanandum 
onto the various schemas (and other knowledge structures) 
in LTM: Effectively, this approach “solves” the type-token 
problem by replacing the question Do these tokens refer to 
the same entity? with the question Do these tokens map to 
one another in the current context? 

 
A Process Model of Explanation 

 
Knowledge Representation As noted previously, the point 
of departure for our effort is Hummel and Holyoak’s (1997, 
2003) LISA model of analogical reasoning. LISA is an 
artificial neural network whose representations and 
processes are rendered symbolic (i.e., explicitly relational) 
by virtue of its solution to the problem of dynamically 
binding relational roles to their fillers. LISA represents 
propositions (such as prefer (ministers, Coke)) using a 
hierarchy of distributed and progressively more localist 
codes (Figure 1).  At the bottom of the hierarchy objects and 
relational roles are represented as patterns of activation 



distributed over units coding for their semantic features 
(small circles in Figure 1).  

At the next level, objects and roles are represented by 
localist object and role units (large circles and triangles in 
Figure 1), which share bidirectional excitatory connections 
with the semantic units describing them.  For example, the 
object unit minister might share connections with semantics 
such as human, adult, religious, etc. Role-filler bindings are 
encoded by sub-proposition units (SPs; rectangles in Figure 
1), which share bi-directional excitatory connections with 
the object and role units they bind together. At the top of the 
hierarchy, proposition (P) units (ovals in Figure 1) bind 
individual role bindings (SPs) together into complete 
propositions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Representation of prefer (ministers, Coke) in 
LISA.  Small circles are semantic units; triangles are 
role units; large circles are object units; rectangles are 
SPs and the oval is a P unit.  Lines are excitatory 
connections.  See text for details. 

 
The hierarchy depicted in Figure 1 represents propositions 

both in LISA’s LTM and, when a proposition becomes 
active, in its working memory (WM). In LTM, a 
proposition’s role bindings are represented strictly by the 
conjunctive SPs. However, this kind of conjunctive code is 
inadequate as a general solution to the binding problem  in 
WM (Hummel & Holyoak, 1997). When a proposition 
becomes active (i.e., enters WM) its role bindings are 
represented both conjunctively by the SPs and dynamically, 
by synchrony of firing: The separate SPs composing a 
proposition inhibit one another, and so fire out of synchrony 
with one another. As a result, relational roles fire in 
synchrony with the fillers to which they are bound, and 
separate role-filler bindings firing out of synchrony with one 
another.  On the semantic units, the result is a collection of 
mutually desynchronized distributed patterns of activation, 
one for each role-filler binding. These representations have 
the property that they represent relational roles and their 
arguments independently of one another (i.e., the same units 
will represent a given object or relational role, regardless of 
the role or object to which it happens to be bound at the 
time) and simultaneously specify how roles are bound to 
their fillers. They are therefore both distributed and 
explicitly relational, i.e., symbolic (see Hummel & Holyoak, 
1997). 

LISA’s knowledge representations are compartmentalized 
into “analogs”: Collections of propositions that together 
represent individual events, stories, concepts or schemas. 
Within an analog, a given object or role is represented by a 
single unit regardless of the number of propositions in 
which it plays a role. However, separate analogs do not 
share object, role, SP or P units: A given object or role is 
represented by one unit in one analog and by a different unit 
in another analog. As such, object and role units do not 
represent objects or roles in the abstract; they represent 
specific instantiations or tokens of those objects or roles in 
specific analogs. (The same is true of SP and P units.) 
Accordingly we will refer to object, role, SP and P units 
collectively as token units. In contrast to the token units, all 
analogs connect to the same pool of semantic units. The 
semantic units thus represent the abstract types to which the 
tokens refer. (Albeit crucial for the various functions LISA 
performs, this division between type and token units is not 
sufficient, by itself, to solve the type-token problem 
described above; indeed, it causes the problem.)  

For the purposes of LISA’s operation, analogs are divided 
into three sets: a driver and one or more recipients are 
assumed to reside in active memory (a primed subset of 
LTM that is larger than WM; Cowan, 2001); the remainder 
are dormant in LTM. All of LISA’s operations are 
controlled by the driver. One (or at most three) at a time, 
propositions in the driver become active and enter the phase 
set: The set of active but mutually de-synchronized role 
bindings. The phase set is LISA’s WM, and like human 
WM (see Cowan, 2001), is limited to at most 4-6 role 
bindings at a time. The patterns of activation that 
propositions in the phase set generate on the semantic units 
excite other propositions in LISA’s LTM (for memory 
retrieval) and in its active memory (for mapping, analogical 
inference and schema induction) and thereby bootstrap all 
the functions LISA performs. 

 
Processing in LISA Most of the operations performed by 
the model described here (e.g., analogical mapping, 
analogical inference, and schema induction) are “standard 
LISA” and, unless stated otherwise, are performed as 
described in Hummel and Holyoak (1997, 2003) (exceptions 
to this generalization are described below where they 
become relevant). LISA performs memory retrieval as a 
form of guided pattern recognition (Hummel & Holyoak, 
1997): Patterns of activation generated on the semantic units 
by one proposition tend to activate other, similar, 
propositions in LTM, retrieving them into active memory.  
For example, the patterns activated by the proposition prefer 
(ministers, Coke) might activate the proposition prefer 
(person, product) in the “product preference” schema. 

Augmented with a simple algorithm for learning which 
structures in the recipient tend to become active in response 
to which in the driver, LISA’s memory retrieval algorithm 
serves as a basis for analogical mapping: In this trivial 
analogy, ministers bound to prefer-agent activates person 
bound to prefer-agent in the schema and Coke bound to 
preferred-object activates product bound to preferred-

    

  

 
prefer (ministers, Coke) 

minister Coke p1 p2 



object; LISA thus maps ministers to person and Coke to 
product. The same is true for corresponding roles of the 
prefer relation, and the SP and P units binding those roles to 
their fillers.   

LISA represents these correspondences as learned 
mapping connections between corresponding structures 
(e.g., between ministers and person, etc.). These 
connections serve both to represent the learned mappings 
and to constrain future mappings: If LISA maps ministers to 
person in the context of prefer, then the resulting mapping 
connection will cause ministers to directly activate (and 
therefore map to) person in subsequent propositions. The 
learned mapping connections also play a central role in 
LISA’s capacity for self-supervised learning—the core of its 
algorithm for analogical inference and schema induction 
(Hummel & Holyoak, 2003).  

One of the main adaptive functions of analogical thinking 
is that it supports analogical inferences a.k.a. relational 
generalization: inferences and generalizations based on the 
relational roles that objects play, rather than just the literal 
similarity of the objects themselves. LISA’s mapping 
algorithm is capable of exploiting the full power of 
relational thinking, mapping utterly dissimilar objects (and 
roles) to one another provided they are bound to similar 
roles (or, in the case of dissimilar roles, are bound to objects 
that are known to correspond based on an earlier mapping). 
In the current example, once LISA maps ministers to person 
and Coke to product (along with their roles), it is then 
prepared to “copy with substitution and generation” 
(Holyoak & Thagard, 1989) the structure of the entire 
“product preference schema” over onto the “minister and 
Coke” situation, effectively filling in a (partial) explanation 
for why ministers prefer Coke. Through a novel process of 
repeated cycles of retrieval, mapping, and inference 
(elaborated below), the current model is able to violate the 
1:1 mapping constraint to integrate multiple sources of 
knowledge through sequential analogical inference, and 
effectively side-step the type-token problem. 

Finally, augmented with a simple algorithm for 
intersection discovery, LISA’s algorithm for analogical 
inference also provides a very natural account of the 
induction of abstract schemas (such as the product 
preference schema) from concrete examples (such as the 
minister and Coke example and the cell phone example) 
(Hummel & Holyoak, 2003). 

LISA’s knowledge representations (“LISAese”), along 
with its algorithms for memory retrieval, mapping, inference 
and schema induction, provide a natural account of roughly 
50 phenomena in the literature on analogical thinking, as 
well as 15 or more in cognitive development (see Doumas, 
et al., 2008; Hummel and Holyoak, 1997, 2003; Hummel & 
Ross, 2006; Morrison et al., 2004; Richland et al., 2006; 
Viskontas et al., 2004).  These abilities derive from the fact 
that LISAese simultaneously enjoys the flexibility of 
distributed representations and the relational sophistication 
of symbolic representations. As such, they are an ideal 

platform on which to build a model of understanding and 
explanation. 

Representing Causal Relations 
Consider a set of propositions that together might form a 

“product preference” schema: 
P1: agree-with (person, corporation) 
P2: produce (corporation, product) 
P3: prefer (person, product) 

and another set of propositions that might form an 
“agreement” schema: 

P1: believe (person, some-proposition) 
P2: believe (entity, some-proposition) 
P3: agree-with (person, entity) 

(Recall that, because they reside in separate “analogs [in this 
case, schemas], person in the product preference schema is a 
different token than person in the agreement schema, even 
though they have the same name.) Assuming these 
propositions constitute reasonable caricatures of the 
preference and agreement schemas, then they are clearly 
causally related to one another. Specifically, P1 and P2 
(agree-with and produce) in the preference schema jointly 
cause P3 (prefer), and P1 and P2 (believe) in the agreement 
schema jointly cause P3 (agree-with). How should these 
causal relations be represented for the purposes of 
generating explanations? 

One straightforward approach would be to represent them 
as explicit propositions, for example: 

P4: and (P1, P2) 
P5: cause (P4, P3) 

LISAese makes it possible for one proposition to take 
another as an argument, so this approach to representing the 
causal relations in a schema is perfectly plausible; and in 
some circumstances (e.g., when thinking explicitly enough 
about a causal relation to write about it), people can 
undoubtedly do so. However, LISAese assumes that explicit 
propositions are represented in WM and therefore consume 
finite WM capacity. As such, we suggest that this approach 
is likely to be too demanding of WM capacity to serve as a 
general solution to the problem of representing causal 
relations for the purposes of explanation: Note that P4 and 
P5 collectively introduce four additional role bindings into 
each schema; that’s eight additional role bindings that 
would need to occupy slots (although not all at the same 
time) in our intrinsically capacity-limited WM. It seems 
intuitive that, although we are aware of the causal relations, 
and can name them when asked, we do not necessarily think 
so explicitly about them in the service of generating an 
explanation. 

Alternatively, we could represent causal relations in an 
entirely implicit fashion, for example as associative links 
whose weights indicate causal strength (e.g., as in a Bayes 
net). This approach would eliminate the WM problem 
caused by the explicit propositions, but it goes too far in the 
opposite direction, representing causal relations only as 
implicit links rather than explicit structures that can be 



activated, analogically mapped and ultimately inferred (e.g., 
by analogical inference) into the emerging explanation.  

We propose a third alternative: To represent groups of 
related propositions by connecting them to group units 
(diamonds in Figure 2; Hummel, Landy & Devnich, 2008).  
For example, the fact that P1 and P2 in the agreement 
schema (the believe relations) jointly cause P3 (the agree 
relation) can be represented by connecting P1 and P2 to a 
single group unit, and tagging that group as a cause group 
by connecting it to semantic units representing cause (for 
simplicity, these semantics are not shown in Figure 2).  
Likewise, the fact that P3 is an effect can be represented by 
connecting it to a group unit, and connecting that unit to 
semantic units representing effect.  Finally, the fact that the 
P1/P2 group is the cause of the P3 group can be represented 
by connecting the cause and effect group units to a higher-
level cause-effect (CE) group unit. This latter unit represents 
the strength of the causal relation by connecting to semantic 
units coding for that strength.  

 
Figure 2.  Illustration of group units (diamonds) as a 
representation of causal relations.  Ovals are P units, 
rectangles are SPs.  Objects, roles and semantic units 
are not shown.  The upper-most diamond is a cause-
effect group (CE); the groups below it to its left is a 
cause group (C); the one below it to its right is an effect 
group (E).  P units are numbered as in the text above.  
 

The resulting representation is more explicit than 
simply representing causal relations as associative links: 
causal relations are represented as collections of units that 
can be activated, mapped and inferred. But at the same time, 
it is less WM-demanding than explicit propositions: group 
units incur no additional WM burden over and above the 
propositions they link as causally related.1   

Group units also serve to organize LISA’s knowledge into 
meaningful packages (including but not limited to causes, 
effects, and cause-effect pairings). As a result, they play a 
central role in determining which propositions are likely to 
become active in close temporal proximity (i.e., what LISA 
is likely to “think about” in what order; see Hummel & 

                                                             
1 Group units reside at different levels of the 
representational hierarchy than P, SP object and role units.  
As a result, they can be coactive with those units without 
having to occupy different slots in WM (see Doumas, et al., 
2008; Hummel & Holyoak, 1997, 2003). 

Holyoak, 1997, 2003). Specifically, LISA’s processing is 
constrained to activate propositions in group-based sets (in 
the driver), and it is constrained to retrieve propositions 
from LTM in group-based sets (a departure from the 
original LISA; Hummel & Holyoak, 1997, 2003). During 
memory retrieval, the probability of a group being retrieved 
into WM at any instant, t, is simply the group’s activation at 
time t. If a cause or effect group gets retrieved at time t, then 
that event automatically triggers retrieval of the group’s 
parent CE group. As a result, if LISA is reminded of a 
familiar effect (e.g., some novel explanandum activates a 
proposition in LTM connected to an effect group), then it 
will tend to be reminded of the cause as well (via the shared 
CE group). In other words, group units not only play an 
important role in LISA’s representation of causal relations; 
they also play a key role in metacognitive aspects of its 
operation, controlling what LISA “thinks about” together, 
and controlling what it is reminded of together. 

Flow of Control 
Armed with group-augmented LISAese, LISA’s 

algorithm for explanation operates according to a retrieve-
map-infer cycle that is applied iteratively to construct a 
causal chain representing an explanation of the 
explanandum. (The same retrieve-map-infer process also 
characterizes reasoning by analogy [see, e.g., Gentner, 
1983]; but in analogical reasoning, it is performed only 
once, not iteratively.) This process is initiated by placing the 
proposition(s) representing the explanandum into the driver, 
connected to an isolated effect group (i.e., an effect group 
with no parent CE group and no sibling cause group). All of 
LISA’s other knowledge resides dormant in LTM. In the 
case of our ministers and Coke example, the driver would 
contain the proposition prefer (ministers, Coke) connected 
to an effect group; LTM would contain all of LISA’s other 
knowledge, including the preference and agreement 
schemas.  

LISA initiates the explanation process by activating the 
proposition and its effect group in the attempt to retrieve a 
relevant schema or prior example from LTM. In the case of 
the current example, the isolated effect group activates the 
effect semantic, and the prefer proposition activates the 
semantics of ministers+prefer-agent and Coke+preferred-
object (the semantics of ministers fire in synchrony with 
those of prefer-agent and out of synchrony with those of 
Coke and preferred-object, but all these units fire in 
synchrony with effect). The resulting patterns of activation 
on the semantic units represent the query Why do ministers 
prefer Coke?, and tend to activate effect groups (via the 
effect semantic) connected to semantically similar 
propositions in LTM (via the semantics connected to the 
proposition). 

In the current example, P3 in the preference schema, 
prefer (person, product), is likely to be retrieved. Since 
retrieval is group-based, with a bias in favor of retrieving 
CE groups over isolated cause or effect groups, the 
activation of P3 in the preference schema is likely to result 



in the retrieval of the whole product preference schema.  
(For convenience, we illustrate flow of control in LISA 
using the preference and agreement schemas, but the logic 
would be exactly the same if, instead of schemas, LISA had 
analogous specific examples, e.g., the cell phone example 
instead of the preference schema.) 

If LISA fails to retrieve a CE group from LTM, then it 
halts, declaring the explanation complete. (If the resulting 
explanation is the empty set, then LISA’s answer is 
effectively “I don’t know.”) If it succeeds in retrieving a CE 
group, then it places a proxy of that group into a workspace 
(i.e., it copies the units composing the group into a target 
analog; retrieval is thus a matter of activation and proxy 
creation rather than simply activating a structure in LTM—
another important departure from Hummel & Holyoak, 
1997, 2003) and maps the elements of the explanandum 
onto the proxy of the CE group, for example, mapping 
ministers onto person, Coke onto product, and prefer onto 
prefer (along with their SPs, P units and effect groups). 

The model next makes the workspace the driver and the 
explanandum the recipient and, using analogical inference 
(i.e., self-supervised learning; Hummel & Holyoak, 2003), 
infers the missing elements in the explanantion. In this case, 
it would infer: 

P2: agree-with (ministers, corporation) 
P3: produce (corporation, Coke), 

connecting both P2 and P3 to a cause group, and connecting 
both that cause group and the existing effect group 
(containing P1: prefer (ministers, Coke)) to a CE group. 
LISA’s explanation now consists of the hypothesis 
“ministers prefer Coke because they agree with the 
corporation that makes Coke.” 

Finally, LISA attaches both P2 (agree-with) and P3 
(produce) to their own effect groups, turns control back over 
to the explanandum (which is now an emerging explanation) 
and starts the whole cycle over again. Attaching P2 and P3 
to effect groups is LISA’s way of seeking new causes to 
explain these facts: Why do ministers agree with the Coke 
corporation? (P2) and (less sensibly) Why does the Coke 
corporation produce Coke? (P3). When the effect group 
connected to P2: agree-with (ministers, corporation) is used 
to drive retrieval, the result is very likely to be retrieval of 
the agreement schema (or an analogous specific example), 
in which case the same processes described above augment 
the explanation with the statements 

P4: believe (ministers, some-proposition) 
P5: believe (corporation, some-proposition), 

connecting both P4 and P5 to a cause group linked via a CE 
group to the effect group connected to P3 (agree-with). 

In the current instantiation of the model, this processes is 
repeated until the retrieval phase fails to retrieve a CE 
group. In the case of the current example, that will happen 
when LISA tries to retrieve a cause group describing why 
the corporation produces Coke (i.e., P3: produce 
(corporation, Coke)). It also happens with a small 
probability when other propositions fire (due to the 
stochastic algorithm for retrieving groups from LTM). This 

“explanation is done when retrieval fails” approach is a 
clear limitation of the model in its current state. Developing 
more intelligent halting criteria is the subject of ongoing 
research.   

What is important to point out in the preceding 
description of the flow of control is the model’s solution to 
the type-token problem: LISA maps ministers to person in 
the context of the preference schema, and then maps 
ministers to person (a completely different token) in the 
agreement schema. Seemingly (although not in fact) more 
impressively, it inferred corporation from the preference 
schema into the explanadum and then correctly mapped 
corporation onto entity in the agreement schema. How did it 
“know” that corporation in the preference schema had the 
same referent as entity in the agreement schema, or that 
person in the preference schema had the same referent as 
person in the agreement schema? The answer is that it did 
not know, and it did not have to. Rather than having to make 
the impossible decision of whether two tokens have the 
same referent, LISA’s iterative retrieve-map-infer algorithm 
need only decide whether two units correspond, that is, map 
to one another, within the confines of the current retrieve-
map-infer cycle. In so doing, it side-steps the question of 
whether the tokens “have the same referent”. In short, LISA 
replaces the question “are they the same?” with the question 
“do they correspond?” and in so doing provides an effective 
solution to one particularly thorny variant of the type-token 
problem. Its ability to do so is a cornerstone of its ability to 
integrate multiple diverse sources of knowledge in LTM in 
the service of explaining a novel explanandum. 

Simulations 
The model described thus far, which consists of LISA 

augmented with units to represent causal groups and 
routines for using those groups to control LISA’s meta-
cognition, is still in an early stage of development. In order 
to test its potential, we ran several simulations based on an 
elaboration of the minister/Coke example given previously.  

In a set of pilot simulations, the explanandum was the 
statement that ministers prefer Coke to Pepsi and we placed 
several facts and schemas into LISA’s LTM: (1) A (partial) 
preference schema stated that a person may prefer x to y 
either because they like x or because they dislike y. (2) A 
Coke-and-cocaine schema specified that Coke used to 
contain cocaine, rendering it and the Coke corporation 
“immoral”. (3) A minister schema specified various 
properties of ministers, including their distaste for 
“immoral” things. (4) An agreement schema contained 
several statements specifying the conditions under which a 
person might like or dislike a product by virtue of their 
agreeing or disagreeing with the corporation that makes that 
product. And (5) a support schema specified how 
supporting common or inconsistent causes can cause a 
person or entity to agree or disagree with another person or 
entity. We also seeded its LTM with several irrelevant facts, 
so that we could evaluate the selectivity of the retrieval 
process.  



Although we did not quantify the results of the pilot 
simulations, a typical result was an explanation such as: 

 
P1: prefer (ministers, Coke)  (the given explanandum) 
P2: believe (ministers, some-proposition) 
P3: believe (corporation, some-proposition) 
P4: agree-with (ministers, corporation) 
P5: produce (corporation, Coke) 

   cause (P2, P3) (P4) 
cause (P4, P5) (P1) 
 

where “cause” is shorthand for a collection of cause, effect 
and CE groups; the first pair of parentheses on each line 
enclose the P units connected to the cause group and the 
second pair enclose the propositions connected to the effect 
group. In other words, LISA inferred that ministers have 
some belief (e.g., some political belief) (P2), the corporation 
that makes Coke (P5) has that same belief (P3), these facts 
together cause the minister to agree with the corporation 
(cause (P2, P3) (P4)), and that this agreement, along with 
the fact that the company produces Coke, causes the 
ministers to prefer Coke (cause (P4, P5) (P1))). 

This explanation represents the result of the majority of 
the pilot runs.  Occasionally, other results obtained. The 
model sometimes produced a truncated “explanation”, in 
which the ministers are assumed to agree with the Coke 
corporation, but the model failed to recognize that they 
share views as a result. This explanation obtains when the 
explanandum, prefer (ministers, Coke), retrieves the 
preference schema on the first retrieve-map-infer cycle, but 
fails to retrieve anything on the next cycle.   

A second result obtains when the explanandum retrieves 
nothing even on its first retrieval cycle. In this case, the 
model halts without generating any explanation at all 
(effectively saying, “I don’t know”). 

 Finally, the model occasionally retrieves the agreement 
schema (rather than the preference schema) on the first 
retrieval attempt. In this case, because analogical mappings 
are relationally flexible, ministers maps to person, and Coke 
maps successfully (but nonsensically) to entity. This 
particular mapping pattern is based on the slight semantic 
overlap between ministers and person (both are connected 
to the semantic human). In this case, the model generates 
the nonsensical “explanation”: 

 
P1: prefer (ministers, Coke)  (the given explanandum) 
P2: believe (ministers, some-proposition) 
P3: believe (Coke, some-proposition) 
 
In no cases did the model retrieve irrelevant information 

from LTM, illustrating that the algorithm is capable of 
selectively retrieving and mapping only potentially 
situation-relevant information. 

In order to more precisely quantify the model’s behavior, 
we also ran a suite of 50 simulations in which the 
exaplanandum was the statement “ministers prefer Pepsi”.  
On 9 of these runs, the model produced no explanations, 

effectively saying “I don’t know”. On an additional 4, it 
produced incoherent explanations, for example, consisting 
of isolated facts not connected by causal relations. The 
remaining 37 runs resulted in coherent, causally-connected 
explanations. Of these, 15 contained three causal links (e.g., 
“ministers prefer Pepsi to Coke because they like Pepsi; 
they like Pepsi because they agree with the Pepsi 
Corporation; and they agree with PepsiCo because they both 
support some cause”). The remaining 22 explanations were 
of length two (e.g., “ministers prefer Pepsi to Coke because 
they dislike Coke; they dislike Coke because Coke is 
immoral”).  

 

Discussion 
We described our progress toward developing a process 
model of how people generate explanations of events and 
“facts”, including novel ones (such as “ministers prefer 
Coke”) that require the reasoner to integrate multiple 
sources of knowledge in LTM. The model is based on a 
psychological model of analogy (Hummel & Holyoak’s, 
1997, 2003, LISA model), reflecting our assumption that 
many of the core processes of explanation are also core 
processes of analogy making.   

However, modeling explanation necessitates going 
beyond modeling analogy in at least two important respects: 
First, explanation, much more than analogy, depends on an 
understanding and appropriate representation of causal 
relations. We model the representation of causal relations 
using units representing groups of propositions (and other 
groups). This representational format is more explicit than 
simple associative links between causes and effects (e.g., as 
in Bayesian models; Pearle, 2000; Tenenbaum, Griffiths, & 
Kemp, 2006), but less explicit than propositional statements 
about cause and effect relations. It permits the model to use 
cause, effect and cause-effect (CE) groups as units of both 
cognitive control and memory retrieval. 

Second, explanation, unlike analogy, often requires the 
reasoner to integrate multiple chunks of knowledge from 
diverse sources in LTM, which in turn requires a resolution 
of a difficult variant of the type-token problem, namely, the 
problem of knowing when different tokens refer to the same 
entity. We resolve this difficulty, not by solving it outright, 
but by replacing the question “are these the same” with the 
question “do these correspond?” and by serializing the 
process of incorporating facts from different sources in 
LTM. 

Preliminary simulation results suggest that the approach is 
promising as general way to understand the process of 
explanation, and indeed, the problem of understanding more 
broadly. 

That said, the model is in an early stage of development, 
and many problems remain to be solved before we have a 
complete (much less correct) process model of explanation. 
First, we must address the problem of how a human 
reasoner knows when an explanation is complete. In the 
current version of the model, this decision is based strictly 



on the failure to retrieve additional causes from LTM. This 
is clearly incomplete, but what is right is harder to say. This 
question is a subject of ongoing research. Second, we must 
address the problem of explanation evaluation (for progress 
in this direction, see Thagard, 2001). One of the hard 
problems to be solved in this domain is contradiction 
detection: How does the cognitive architecture know when 
it has postulated something just plain stupid (e.g., “believe 
(Coke, some-proposition)”) in the process of generating an 
explanation? Third, we must include a role for elaboration 
in explanation: in our example problem, for instance, the 
model is given the knowledge that ministers are politically 
conservative. Nevertheless, the model never suggests that 
the source of agreement between the Coke corporation and 
the ministers is one of conservative values. Such elaboration 
is not part of the causal chain approach here, but seems to be 
a central component of explanation generation.   

These issues remain serious hurdles in our attempt to 
understand how people perform this most mundane and 
everyday task of explanation. In the mean time, we believe 
our current work takes us at least one step closer to an 
answer to the difficult question of how we generate 
explanations. 
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