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Abstract

Although the field of perceptual learning has mostly been concerned with low- to middle-level

changes to perceptual systems due to experience, we consider high-level perceptual changes that

accompany learning in science and mathematics. In science, we explore the transfer of a scientific

principle (competitive specialization) across superficially dissimilar pedagogical simulations. We

argue that transfer occurs when students develop perceptual interpretations of an initial simulation

and simply continue to use the same interpretational bias when interacting with a second simulation.

In arithmetic and algebraic reasoning, we find that proficiency in mathematics involves executing

spatially explicit transformations to notational elements. People learn to attend mathematical opera-

tions in the order in which they should be executed, and the extent to which students employ their

perceptual attention in this manner is positively correlated with their mathematical experience. For

both science and mathematics, relatively sophisticated performance is achieved not by ignoring per-

ceptual features in favor of deep conceptual features, but rather by adapting perceptual processing so

as to conform with and support formally sanctioned responses. These ‘‘rigged-up perceptual

systems’’ offer a promising approach to educational reform.

Keywords: Perceptual learning; Education; Mathematical reasoning; Complex systems; Scientific

reasoning

1. Introduction

Understanding science and mathematics, on first sight, relies on the highest of high-level

cognition. Scientific reasoning depends on analytic thought, making novel and creative asso-

ciations between dissimilar domains, and developing deep construals of phenomena that run

counter to untutored perceptions. In fact, Quine (1977) considered a hallmark of advanced
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scientific thought to be that it no longer requires notions of overall perceptual similarity as

the basis for its categories (see also Goodman, 1972). The rationale for this claim is that

unanalyzed perceptual similarities may lead one astray. For example, marsupial wolves may

closely resemble the placental wolves customary in the Northern Hemisphere, but they are

evolutionarily rather distant cousins. The generalization of this example is that as a scientist

develops more complete knowledge about the reasons why an object has a property, then

overall perceptual similarity becomes decreasingly relevant to generalizations. The knowl-

edge itself guides whether the generalization is appropriate. Historical, as well as lifelong

(Carey, 2009; Chi, Feltovich, & Glaser, 1981), maturation in scientific and formal reasoning

can be viewed as increasing reliance on deep principles and decreasing reliance on poten-

tially misleading perceptual resemblances.

Although there is certainly justification for this opposition between superficial perception

and principled understanding (Sloman, 1996), we will be advocating the converse strategy

of trying to ground scientific and mathematical reasoning in perceptual processing. In partic-

ular, we pursue the agenda of co-opting natural perceptual processes for tasks requiring

abstract or analytic reasoning (see also Barsalou, 2005; Goldstone & Barsalou, 1998). A first

reason for pursuing this agenda is that our visual and auditory perceptual systems are rela-

tively extensive neuroanatomically speaking, and are phylogenetically early. They are,

accordingly, good candidates for reuse by later developing, high-level cognitive processes.

Second, because perceptual systems encode aspects of external objects in a relatively

direct, ‘‘raw’’ fashion, they can implicitly represent certain aspects of those objects without

explicit machinery to do so (Palmer, 1978). Representations that intrinsically preserve phys-

ical properties are often more efficient than purely symbolic representations because they do

not require external constraints to assure proper inferences. Relatively raw representations

are particularly useful when one does not know what properties will be needed at a later

point, or explicitly how to compute the needed properties. Surprisingly then, perceptual rep-

resentations are often times most useful for more complex cognitive processes—those with-

out simple definitions or rules.

Third, many properties of abstract cognition, when explored from the perspective of pro-

cesses that could furnish them, are also found in perceptual systems. Rule use in high-level

cognition is paralleled in perception by selective attention. Both involve highly efficient

selection of relevant, and inhibition of irrelevant, attributes. Schizophrenics have difficulty

inhibiting both inappropriate thoughts and irrelevant perceptions (Beech, Powell,

McWilliam, & Claridge, 1989). Conversely, many of the perceptual and cognitive symp-

toms of childhood autism, including hypersensitivity to sensory stimulation, abnormally nar-

row generalizations from training, and lack of productive language, may be traced to an

overly selective attentional process (Lovaas, Koegel, & Schreibman, 1979). Other examples

of parallel processes between perception and high-level cognition include structural binding

(of features into objects for perception, or fillers into roles for cognition), simplification

(through visual blurring or strategic cognitive filtering), and cross-domain matching (synes-

thesia in perception, or analogical reasoning in cognition). Considerations of individual dif-

ferences, task manipulations, and neuropsychological data provide enough evidence for

correlations between perceptual and conceptual tasks to encourage pursuit of the possibility
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that they are linked by overlapping processes rather than by mere analogy (Barsalou, 2008;

Goldstone & Barsalou, 1998).

2. Adapting perception to fit cognition

An important reason why perception and high-level cognition are more closely related

than might appear at first sight is that perception is not limited to what we see at first sight.

We adapt our perceptual systems to fit our higher-level cognitive needs. Experts in many

domains, including radiologists, wine tasters, and Olympic judges, develop specialized per-

ceptual tools for analyzing the objects in their domains of expertise (Gauthier, Tarr, & Bubb,

2009). Much of training and expertise involves not only developing a database of cases or

explicit strategies for dealing with the world but also tailoring perceptual processes to more

efficiently gather information from the world (Gibson, 1991). Even expertise in mathematics

and science often involves perceptual learning. Biology students learn to identify cell struc-

tures, geology students learn to identify rock samples, chemistry students learn to recognize

chemical compounds by their molecular structures, and students of mathematics rely on rec-

ognizing regularities in notation (Cajori, 1928).

Research in perceptual learning indicates influences of cognitive tasks on perceptual sys-

tems that are surprisingly early in the information processing sequence. For example, prac-

tice in discriminating small motions in different directions significantly alters electrical

brain potentials that occur within 100 ms of the stimulus onset (Fahle & Morgan, 1996).

Prolonged practice with a subtle visual categorization results in much improved discrimina-

tion, but the improvements are highly specific to the trained orientation of grating patterns

(Notman, Sowden, & Özgen, 2005). This profile of high specificity of training is usually

associated with changes to early visual cortex (Fahle & Poggio, 2002).

Perceptual change can also be functional to naturally occurring tasks of an individual.

Expertise can lead to improvements in the discrimination of low-level, simple features, as

with the documented sensitivity advantage that radiologists have over novices in detecting

low-contrast dots in X-rays (Sowden, Davies, & Roling, 2000). Expertise for visual stimuli

as eclectic as butterflies, cars, chess positions, dogs, and birds has been associated with an

area of the temporal lobe known as the fusiform face area (Bukach, Gauthier, & Tarr,

2006). In general, perception is adapted to promote the categories or responses required for

performing a task, and these adaptations often occur at an early stage of processing.

As a field, perceptual learning has been principally concerned with low- to middle-level

changes to perceptual processing (Fine & Jacobs, 2002). However, in our two case studies

from science and mathematics, we will be considering perceptual learning in fairly late pro-

cesses that are implicated in object and event interpretation because the payoffs for percep-

tual flexibility, at all levels, are too enticing to forego. They allow an organism to respond

quickly, efficiently, and effectively to stimuli without dedicating online executive control

resources. Instead of strategically determining how to use unbiased perception to fit one’s

needs, it is often easier to rig up a perceptual system to produce task-relevant representa-

tions, and then simply leave this rigging in place without strategic control. This ‘‘rigged-up
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perceptual systems’’ (RUPS) hypothesis can be stated explicitly as follows: An important

way to efficiently perform sophisticated cognitive tasks is to convert originally demanding,

strategically controlled operations into learned, automatically executed perceptual

processes. These tasks can be understood as on par with the kinds of ‘‘visual routines’’

proposed by Shimon Ullman (1984) to account for how people extract information from a

visual scene using processes such as shifting attentional focus, indexing items, tracing

boundaries, and spreading activation from a point to the boundary of an area. We will

consider this RUPS with respect to two high-level cognitive tasks with educational

relevance—one from scientific reasoning and one from mathematics.

3. Tuning perception to scientific principles

In Section 1, we described the marsupial versus placental wolf case as an example of

superficially similar objects with deeper, biological differences. An example of the converse

comparison, superficially dissimilar objects with deep commonalities would be whales and

hippopotamuses, whose current dissimilarities belie their relatively recent shared ancestor.

Cases like these are pedagogically important, because it has proven difficult for students

(and other people) to transcend superficial appearances and appreciate hidden, deep princi-

ples (Carraher & Schliemann, 2002). Learners in many domains do not spontaneously trans-

fer what they have learned to superficially dissimilar domains (Detterman, 1993; Gick &

Holyoak, 1980, 1983). Physics professors who have taught students to find the time required

for a ball to fall on the ground from a 200-ft tower have been shocked when their students

fail to see the applicability of the same equations for finding the time required for a ball to

fall to the bottom of a 200-ft well (David Perkins, personal communication, 1998). Although

the teacher thinks in terms of general gravitational acceleration, the students fail to make

the leap from towers to wells.

To understand transfer, instead of examining these all-too-common failures, we consider

from our classroom and laboratory observations (Goldstone & Sakamoto, 2003; Goldstone

& Son, 2005; Goldstone & Wilensky, 2008; Son & Goldstone, 2009a) a situation where

spontaneous transfer occurs, and analyze its perceptual basis. This situation involves the sci-

entific principle of ‘‘competitive specialization.’’ In competitive specialization scenarios

(Rumelhart & Zipser, 1985), a good solution is found if every region has an agent reason-

ably close to it. For example, an oil company may desire to place oil drills such that they are

well spaced and cover their territory. If the oil drills are too close, they will redundantly

access the same oil deposit. If the oil drills do not efficiently cover the entire territory, then

some oil reserves will not be accessed.

3.1. Ants and Food

The first example of competitive specialization involves ants foraging food resources

drawn by a user. The ants follow exactly the following three rules of competitive specializa-

tion. At each time step, (a) a piece (pixel) of food is randomly selected from all of the food
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drawn by a student, (b) the ant closest to the piece moves with one rate, and (c) all of the

other ants move with another rate. In interacting with the simulation, a learner can reset the

ants’ positions, clear the screen of food, draw new food, place new ants, move ants, start ⁄
stop the ants’ movements, and set a number of simulation parameters. The two most critical

user-controlled parameters determine the movement speed for the ant that is closest to the

selected food (called ‘‘closest rate’’ in Fig. 1) and the movement speed for all other ants

(‘‘not closest rate’’). Starting with the initial configuration of three ants and three food piles

shown in Fig. 1, several important types of final configuration are possible and are shown in

Fig. 3. If only the closest ant moves toward a selected piece of food, then this ant will be the

closest ant to every patch of food. This ant will continually move to new locations on every

time step as different patches are sampled, but it will tend to hover around the center of

mass of the food patches. The other two ants will never move at all because they will never

be the closest ant to any food patch. This configuration is suboptimal because the average

distance between a food patch and the closest ant (a quantity that is continually graphed) is

not as small as it would be if each of the ants specialized for a different food pile. On the

other hand, if all of the ants move equally quickly, then they will quickly converge to the

Fig. 1. A screen dump of an initial configuration for the ‘‘Ants and Food’’ computer simulation. At each time

step, a patch of food is randomly selected, and the ant closest to the patch moves toward the patch with one

speed (specified by the slider ‘‘Closest Rate’’) and the other ants move toward the patch with another speed

(‘‘Not Closest Rate’’).
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same screen location. This also results in a suboptimal solution because the ants do not

cover the entire set of resources well—there will still be patches that do no have an ant

nearby. Finally, if the closest ant moves more quickly than the other ants but the other ants

move too, then an approximately optimal configuration is achieved. Although one ant will

initially move more quickly toward all selected food patches than the other ants, eventually

one of the other ants will move so as to be the closest to another patch, thereby allowing for

locational specificity for both ants.

An important, subtle aspect of this simulation is that poor patterns of resource covering

are self-correcting so the ants will almost always self-organize themselves in a 1-to-1 rela-

tionship to the resources regardless of the lopsidedness of their original arrangement if good

parameter values are used.

3.2. Pattern Learning

The second example of competitive specialization, shown in Fig. 2, involves sensors

responding to patterns drawn by the user. Just like the Ants and Food scenario, the Pattern

Fig. 2. A screen dump for the simulation ‘‘Pattern Learning.’’ Users draw pictures, and prior to learning, a set

of categories are given random appearances. During learning, a picture is selected at random, and the most

similar category to the picture adapts its appearance toward the picture at one rate (specified by the slider ‘‘most

similar’’) while the other categories adapt toward the picture at another rate (‘‘not most similar’’).
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Learning simulation also follows the three rules of competitive specialization. At the begin-

ning of the simulation, the sensors respond to random noise. But at each time step, a pattern

is randomly selected from all of the patterns drawn by a user, and the sensor most similar to

that pattern adapts to become more similar to that pattern at a particular rate. All of the other

sensors adapt toward the selected pattern at another rate. Users can reset sensors to become

random again, draw patterns, erase patterns, copy patterns, add noise, start ⁄ stop pattern

learning, and change a number of parameters. The most important parameters are the rates

of adaptation for the most similar and not most similar sensors.

3.3. Transfer by primed perceptual interpretations

As may be clear to the reader, these two situations are, at their heart, the same system.

Pattern Learning is a high-dimensional generalization of the two-dimensional Ants and

Food scenario. Some of the functional equivalents of the scenarios are shown in Fig. 3.

Fig. 3. The basis for the isomorphism between the Ants and Food and Pattern Learning simulations. If only the

most similar agent to a resource adapts, then often a single agent will move toward the average of all of the

resources. If all agents adapt equally quickly, then they will all move toward the average position. If the agent

closest to a resource patch moves much faster than the other agents but all agents move a bit, then each of the

agents typically becomes specialized for one resource type.
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Surprisingly, our laboratory and classroom investigations with these two demonstrations of

competitive specialization have shown that students can, under some circumstances, transfer

what they learn from one simulation to another (Goldstone & Sakamoto, 2003; Goldstone &

Son, 2005). Even though there is a lack of superficial perceptual features shared by Figs. 1

and 2, we nonetheless believe that the observed transfer is due to perceptual learning. In par-

ticular, we believe that students who interact with the Ants and Food simulation actively

interpret the presented perceptual patterns, and carry over these interpretations to the more

complex Pattern Learning situation. We see this process of carrying over interpretations as

akin to Leeper’s (1935) classic finding that an ambiguous man ⁄ rat drawing is automatically

interpreted as a man when preceded by a drawing of a man and as a rat when preceded by a

rat. This phenomenon is not ordinarily thought of as transfer, but it is an example of a pow-

erful influence of prior experiences on high-level perception. Originally dissimilar events

can come to be seen as similar because the perceptual interpretations may be highly selec-

tive, perspective-dependent, and idealized.

Two alternative characterizations of this RUGS effect are usefully delineated because

they bear generally on mechanisms of perceptual learning. One classic dispute, as character-

ized by Gibson and Gibson (1955, p. 34), concerns the question ‘‘Is learning a matter of

enriching previously meager sensations or is it a matter of differentiating previously vague

impressions?’’ According to the enrichment view, perceptions change as sensory informa-

tion becomes associated with and enriched by accompanying information such as labels,

outcomes, or contexts (Postman, 1955). These enrichments can be said to bias one’s percep-

tion of an event. According to the Gibsons’ differentiation view, perceptions change not by

becoming connected to learned associations, but by becoming more connected to the exter-

nal world and its properties. Thus, it is assumed that learning involves responding to previ-

ously ignored sensory information. The Gibsons typically interpret this as learned

perceptual selection of critical event information. Our account of the psychological change

associated with exploring the Ants and Food situation is more consistent with the Gibsons’

account in that our students do not seem to be simply biased to interpret all situations via a

competitive specialization lens. Only situations that truly instantiate the principle are inter-

preted according to the principle (Goldstone & Sakamoto, 2003; Son & Goldstone, 2009a).

However, rather than characterizing the perceptual change as improved selection of task-

relevant features as the Gibsons do, we emphasize that the entire process of interpreting a

situation is altered.

One source of evidence that students are indeed basing their interpretation of Pattern

Learning on their interpretation of the preceding simulation is that they can solve problems

in the Pattern Learning scenario more effectively when it has been preceded by Ants and

Food than a scenario governed by a different principle (Goldstone & Son, 2005; Son &

Goldstone, 2009a). One prime facie reason to believe that the beneficial transfer is percep-

tual in nature is the students’ spontaneous visualizations, examples of which are shown in

Fig. 4. A student was asked to visually describe what would happen when there are two cat-

egories and four input pictures that fell into two clusters: variants of As and variants of Bs.

The student drew the illustration in Fig. 4A. In this illustration, adaptation and similarity are

both represented in terms of space. The two categories (‘‘Cat1’’ and ‘‘Cat2’’) are depicted
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as moving spatially toward the spatially defined clusters of ‘‘A’’s and ‘‘B’’s, and the ‘‘A’’

and ‘‘B’’ pictures are represented as spatially separated. The context for Fig. 4B was a stu-

dent who was asked what problem might occur if the most similar detector to a selected pic-

ture moved quickly to the picture, whereas the other detectors did not move at all. The

student showed a single category (shown as the box with a ‘‘1’’) moving toward, and even-

tually oscillating between, the two pictures. Again, similarity is represented by proximity

and adaptation by movement.

Students’ verbal descriptions also give evidence of the spatial diagrams that they use to

explicate Pattern Learning. Students frequently talk about a category ‘‘moving over to a

clump of similar pictures.’’ Another student responded that ‘‘this category is being pulled in
two directions—toward each of these pictures.’’ A third student also uses spatial language

when describing, ‘‘These two squares are close to each other, so they will tend to attract the

same category to them.’’ All three of these reports show that students are construing visual

similarity in terms of spatial proximity. Our students find making the connections between

adaptation and motion, and between similarity and proximity to be natural, but only after

they have had experience with Ants and Food. Specifically, 30% of participants used spatial

terminology when describing Pattern Learning when it was preceded by Ants and Food,

whereas only 8% of participants did so when Ants and Food was presented first. Moreover,

participants’ use of spatial terminology was significantly correlated with their success at

solving problems posed in the Pattern Learning scenario, such as developing an automated

procedure for developing three categories that each becomes uniquely specialized toward

one of three input pictures. Pattern Learning problems were solved an average of 40 s

sooner when students used spatial terminology to describe the scenario.

Our proposal is that students are using the literal, spatial models that they learned while

exploring Ants and Food to understand and predict behavior in Pattern Learning. If students

connect visual similarity to spatial proximity, they conduct the same kinds of mental simula-

tions in Pattern Learning that they perform when predicting what will happen in new Ants

Fig. 4. Typical visualizations of students expressing their knowledge of Pattern Learning. In (A), the student

represents the adaptation of categories by moving them through space toward two clusters of stimuli. The simi-

larity of the two variants of ‘‘A’’ is represented by their spatial proximity. In (B), a student was asked to illus-

trate a problem that arises when the closest category to a pattern adapts, but the others do not adapt at all: a

single category is shown oscillating between two patterns. Note the similarity to the top panel of Fig. 3 with the

Ants and Food simulation.
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and Food situations. So we do not believe that students abstract a formal structural descrip-

tion that unifies the two simulations. Instead, they simply apply to a new domain the same

perceptual routines that they have previously acquired. To the experienced eye, identical

perceptual configurations are visible across the two simulations. The property of ‘‘one thing

trying to cover everything’’ is seen in both simulations on the top row of Fig. 3, and

‘‘Everybody is doing the same thing’’ is seen in both simulations in the middle row. The

critical point is that these paired simulations are obviously not perceptually similar under

just any construal. It is only to the student who has understood the principle of competitive

specialization as applied to Ants and Food that the two situations appear perceptually

similar.

There is additional evidence from students’ interpretations that their perception of cross-

scenario similarity is driving transfer. Many interpretations of the Ants and Food scenario

would not be expected to increase perceived similarity to Pattern Learning because they

were domain-specific, ‘‘arthropocentric’’ interpretations of the ants’ behavior. Participants

frequently described ants as scaring each other away, avoiding crowds, being tempted by

food, or being tired. A judge tallied the number of domain-specific interpretations over all

of the descriptions, both unique and shared. For an interpretation to count as domain-spe-

cific, it needed to be (a) applicable to sentient agents like ants but not nonsentient agents like

the categories of the second simulation, (b) described in terms of ‘‘ants’’ or ‘‘food’’ rather

than more abstract language such as ‘‘forager’’ or ‘‘groups,’’ and (c) not simply a specific

instantiation using ants and food of the abstract rules that in fact governed the ants’ behav-

ior. Participants who formed these kinds of domain-specific interpretations showed no bene-

ficial transfer to Pattern Learning.

This result would also be consistent with students’ conceptual understandings driving

their perceptual interpretations rather than our thesis—that the perceptual interpretations are

driving transfer. However, by manipulating the likelihood of producing a domain-specific

perceptual interpretation, we affect transfer. In particular, when the Ants and Food are both

given concrete manifestations in which they are clearly identifiable by their graphical simu-

lation elements as ants and food, then participants are much more likely to give domain-

specific interpretations such as ‘‘this ant is tired’’ or ‘‘this ant is scared of this other ant.’’

These domain-specific interpretations give rise to worse transfer to Pattern Learning (see

also Goldstone & Sakamoto, 2003; see also Son & Goldstone, 2009b). In contrast, when the

ants and food are depicted by simple dots for the ants and blobs for the food, then fewer

domain-specific interpretations are given and better transfer is achieved. Given this result,

we believe that the perceptual encodings of the simulation elements drive transfer, rather

than a priori individual differences in understanding driving perceptual interpretations.

The benefit of idealized over concrete depictions for transfer also undercuts treating

‘‘perceptual’’ as equivalent to ‘‘superficial.’’ The facilitation in understanding Pattern

Learning when it has been preceded by Ants and Food is explainable by the deployment of

a dynamic, spatial model of agents moving toward resources with differential rates, and

each agent tending to move quickly only toward resources that are close. Perceptual aspects

that are not relevant to this model do not promote beneficial transfer. This is consistent with

other results. Mathematical systems are more readily transferred when they are conveyed
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with generic symbolic forms rather than more concrete graphical representations even when

the latter have features that intrinsically conform to the underlying formalism (Kaminski,

Sloutsky, and Heckler, 2008).

4. Adapting perception and action to algebraic reasoning

Our second case study of the application of RUPS is in the domain of algebraic reason-

ing. Even more so than scientific reasoning, mathematical reasoning is traditionally assumed

to involve formal operations. Algebraic symbolic reasoning is assumed to depend on inter-

nal structural rules. Algebra is often considered to be the best example of widespread com-

putational cognition—the application of laws to structured strings, where those laws

generalize on the basis of the identity of the symbols, and that identity is arbitrarily related

to the symbols’ content (Fodor, 1992). In contrast, our prior research (Landy & Goldstone,

2007a,b) has indicated that our participants are heavily influenced by groupings based on

perceptual properties when performing both algebra and arithmetic. Despite being reminded

of, and verbally subscribing to, standard order of precedence rules according to which multi-

plications are performed before additions, our college student participants are much more

likely to calculate an incorrect solution value of 25 for ‘‘2+3 * 5 = ?’’ than ‘‘2 + 3*5 = ?.’’

The speed and accuracy of calculation suffers when the physical spacing around an opera-

tion is inconsistent with its order of precedence, for example, when there is less space

around the ‘‘+’’ sign than ‘‘*’’ sign. In general, participants seem to create perceptual

groups of notational elements, and use these groups, rather than just calculation rules, to per-

form mathematics.

From these results, it might be concluded that there is an inherent and perpetual conflict

between rule-based and perceptual processes. In contrast, the RUPS position is that we adapt

our perceptual processing so as to produce results that are consistent with formally sanc-

tioned mathematical rules. We look for ways of easing the load on our executive control

system—the system required to prioritize, execute, and monitor rules. One excellent way to

ease this load is to have our perceptual systems naturally do the formally right thing. We

briefly consider three results from algebraic reasoning that suggest RUPS.

4.1. Eye movements and order of precedence

Rather than memorize the precedence rule ‘‘multiplication and division before addition

and subtraction,’’ we may learn to move our eyes in a way that has the effect of honoring

this explicit rule automatically. In one experiment supporting this conjecture, participants’

eye movements were measured when they were asked to solve arithmetic problems like

‘‘2 · 3 + 4’’ (called a ‘‘multiplication–addition’’ problem because the multiplication

occurs first) and ‘‘2 + 3 · 4’’ (an ‘‘addition–multiplication’’ problem) (Landy, Jones, &

Goldstone, 2008). Fig. 5 shows that participants tended to look at the multiplication portion

of the expression during the early stages of the trial. In addition, their very first eye move-

ments tended to be toward the multiplication, and gazes to multiplications lasted longer than
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gazes to additions. Similar results are found whether multiplication is denoted by an ‘‘·’’ or

dot.

4.2. Influence of order of precedence on attention tasks not explicitly involving mathematics

We interpret the previous results as suggesting that people’s perceptual systems become

rigged up over practice with mathematics to automatically gravitate toward exactly the

region of an equation that they should first process according to the dictates of mathematics.

An alternative account is that attention is quickly but strategically being allocated exactly to

where it ought to be for the mathematical task at hand. To address this counterproposal, we

have also explored the allocation of attention in tasks that use mathematical notation but do

not require a mathematical response.

In one such task, we simply asked participants which side of a multiplication–addition or

addition–multiplication expression such as ‘‘2 · 3 + 4’’ or ‘‘2 + 3 · 4’’ contained the tar-

get operation. The target operation was switched from ‘‘+’’ to ‘‘·’’ every 20 trials. Partici-

pants were faster and more accurate when the target was ‘‘·’’ rather than ‘‘+,’’ and this

advantage was even found when a centered dot was used to denote multiplication. In fact,

this detection advantage is even found with novel, counterbalanced operators that have an

order of precedence that is learned during an initial phase of the experiment. Thus, partici-

pants show a detection advantage for the notational symbol that has a higher order of prece-

dence in the mathematic system that is learned, even when the assignment of the symbol to

order of precedence is randomized.

As a third test of the tendency of notational elements with high order of precedence to

attract attention, we employed a Flanker Task (Eriksen & Eriksen, 1974). In our

instantiation of this task, participants saw expressions like ‘‘4 · 5 + 6 · 7’’ and simply had

to respond as quickly as possible as to what the center operator was, pressing one key for

‘‘+’’ and another key for ‘‘·.’’ As Fig. 6 shows, there is a modest but statistically significant

influence on accuracy of the congruence of flanking operators, but only when they had a

Fig. 5. Mean gaze position (rightward gaze is plotted as positive) for addition–multiplication and multiplica-

tion–addition problems across the duration of a trial (expressed as the proportion of the trial). Participants tend

to look at the multiplication sign before the addition sign.
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higher order of precedence than the central operator. That is, participants are significantly

less likely to give a correct response of ‘‘+’’ in the above incongruent expression than they

are for the expression ‘‘4 + 5 + 6 + 7’’ in which the central and flanking elements are con-

gruent in pointing toward ‘‘+.’’ This strong congruence effect was not found when ‘‘·,’’ the

notation element corresponding to the operation with a high order of precedence, was in the

center. Overall, response times were faster with ‘‘+’’ than ‘‘·’’ targets, arguing that this

effect is not simply due to faster processing of the ‘‘·.’’ Apparently the ‘‘·’’ sign attracts

more attention than the ‘‘+’’ sign in the context of mathematical expressions, even when no

mathematical calculations are required.

4.3. Learning to visualize transposition

One final source of evidence in favor of RUPS for algebraic reasoning concerns reason-

ers’ deployment of imagined movement events to solve math problems. When students first

learn how to solve for a variable in a problem like ‘‘X + 4 = 9’’ they first learn that making

the same change to both sides of an equality preserves that equality. Thus, it is formally

sanctioned to subtract 4 from both sides of the equality, producing ‘‘X + 4 ) 4 = 9 ) 4,’’

which simplifies to ‘‘X = 5.’’ However, many students report that, after having gained expe-

rience with this principle, they learn to shorten solution time by simply moving the 4 from

the side of the equation with the ‘‘X’’ to the opposite side, changing the sign of the 4 in the

process. Although this transposition operation is highly intuitive, it is noteworthy that this

kind of spatial transformation does not appear in most leading models of algebra (e.g.,

Anderson, 2005).

Fig. 6. Results from a Flanker Task by D. Landy and R. L. Goldstone (unpublished data). Making a response to

a central operator is only appreciably hindered by incongruent peripheral operators when the central operator

has a lower order of precedence.

R. L. Goldstone, D. H. Landy, J. Y. Son ⁄ Topics in Cognitive Science 2 (2010) 277



To test whether the intuitively plausible spatial transposition strategy is naturally adopted

by our participants, we presented displays like that shown in Fig. 7 to participants and had

them solve for the variable. The equation was superimposed on top of a vertically oriented

grating that continuously moved to either the left or right. The movement of the grating was

either compatible or incompatible with the movement of numbers implicated by a transposi-

tion strategy. For the equation ‘‘4 * Y + 8 = 24’’ shown in Fig. 7, a rightward motion of the

grating would be compatible with transposition because, in order to isolate Y on the left side,

the 4 and 8 must be moved to the right. However, for the equation ‘‘24 = 4 * Y + 8,’’ a right-

ward motion would be incompatible. Participants solved the equations more accurately when

the grating motion was compatible with transposition. Accuracy on incongruent and congru-

ent motion trials were 95.2% versus 96.3%, respectively, a numerically small but significant

difference, paired t(56) = 2.5, p < .05. No difference was found for response times.

The accuracy difference is consistent with a ‘‘visual routines’’ (Ullman, 1984) approach

to mathematical cognition, according to which people engage in dynamic, visual–spatial rou-

tines to perform perceptual computations. Of particular relevance to the perceptual learning

aspect of this transposition routine, we also found that participants who have taken advanced

mathematics courses are more affected by the compatibility of the background motion than

students with less experience. Participants reporting having taken calculus were substantially

more accurate overall, mean error rate = 0.1, than non-calculus-takers, mean error

rate = 0.27; F(1, 56) = 7.9, p < .01. Experienced participants were also more affected by the

compatibility of the transposition motion and background motion than were non-calculus-

takers, F(2, 114) = 4.71, p < .05. Accordingly, we conclude that the imagined motion strat-

egy is a smart strategy that students come to adopt through experience with formal notations,

rather than a strategy that students initially use while learning, and then abandon as their

sophistication increases. Learned perceptual routines are not at odds with strong mathemati-

cal reasoning; they are likely the means by which strong mathematical reasoning is possible.

4.4. Recapitulation of RUPS for math

The theoretical upshot of this work is to question the assumption that mathematical cog-

nition generally operates like formal systems of algebra or mathematical logic. The laws of

Compatible motionIncompatible motion

Fig. 7. As participants solved for the variable in equations like the above, a vertically oriented grating continu-

ously moved either to the left or to the right. Although irrelevant for the task, when the movement of the grating

was compatible with the movements of the numbers required by transposition, participants were more accurate.
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algebra are formal in the sense of operating on the basis of axioms that are independent of

visual form. Multiplication is commutative no matter what terms are multiplied and how

they look. Mathematical cognition could have worked like this too. If it had, it would have

provided a convenient explanation of how people perform algebra (Anderson, 2007). How-

ever, the conclusion from our experiments is that seeing ‘‘X + Y * A’’ cannot trivially be

translated into the symbolic mentalese code * (+ (G001, G002), G003). Although it would

be awfully convenient if a computational model of algebraic reasoning could aptly assume

the transduction from visual symbols to mental symbols, taking this for granted would leave

all of our current experimental results unexplained. We should resist the temptation to posit

mental representations with forms that match our intellectualized understanding of mathe-

matics. A more apt input representation to give a computational model (D. Landy, unpub-

lished data) would be a visual–spatial depiction of notational elements that includes their

absolute positions, spacings, sizes, and accompanying nonmathematical pictorial elements

(such as the moving grating in the transposition experiment). Furthermore, much, perhaps

all, of the processing of these mathematical expressions occurs in the same visual–spatial

medium that houses this input representation. Processes like marking off elements as han-

dled, combining terms to form simpler expressions, and moving, distributing, and factoring

terms can all take place within this space with no translation to a purely symbolic form. The

power of maintaining both the inputs and processes in this visual–spatial format is substan-

tially amplified because perceptual processes can be customized by the reasoner to save

labor and the need for executive control.

Our primary claim has been that people’s mathematical operations that need not logically

involve space or spatial transformations nevertheless do involve them. The operations most

likely involve spatial processes that are not restricted to vision, but it is also clear that ongo-

ing visual processing can facilitate or impede these spatial processes. Our results could be

interpreted as arguing against the use of symbolic representations of mathematics, but others

have argued that it is precisely perceptual processes that establish symbolic descriptions

(Pylyshyn, 2000) and mathematical notations are, after all, symbolic expressions. Accord-

ingly, rather than opposing symbolic processing of mathematics, we interpret our results as

challenging conceptions of symbols as divorced from analog, symbolic information. In this

respect, we offer a reinterpretation of Newell and Simon’s (1963, 1976) influential ‘‘Physi-

cal Symbol System Hypothesis.’’ Their hypothesis was that physical symbol systems had

the necessary and sufficient means for producing intelligent action. A symbol system

includes both physical symbols such as marks on paper or punches on a computer tape, and

the explicit rules for manipulating these tokens. In practice, all of their physical symbols

were distantly related to their worldly referents, and were digital and discrete entities such

as the strings ‘‘P Q’’ and ‘‘GOAL 7 TRANSFORM L3 INTO LO.’’ The arbitrary nature of

these entities was by design because they wanted symbols to be able to designate any

expression whatsoever without any a priori prescriptions or limitations. We concur with

Newell and Simon’s emphasis on physical symbols and believe in paying even more atten-

tion to symbols’ physical attributes involving space, shape, and perceptual grouping.

Accordingly, our revised physical symbol systems hypothesis is that symbols are not arbi-

trary, unconstrained tokens, but rather are organized into perceptual groups and processed
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using space. This conception of physical symbols makes them far more constrained than

those underlying Newell and Simon’s General Problem Solver, but these constraints are not

only limiters, but permitters as well. For Specific Problem Solvers that are humans, it is a

good policy to design symbols that can be processed efficiently given what we know about

perceptual and cognitive mechanisms.

5. Conclusions

There is a striking difference between the sluggish rate with which human biology

changes and the dizzying pace of progress in science and mathematics. In advocating an

account of math and science that is grounded in perception and action, we must confront the

fact that we are using the essentially same kinds of brains to understand advanced modern

formalisms that have been used for millennia. Perceptual learning is at the core of our reso-

lution to the discrepancy between scientific and neuro-evolutionary progress and a grounded

account of the former. Our biology adapts at a plodding rate, but one thing that evolution

has built into this biology is the ability to learn rapidly during an organism’s life (Sterelny,

2003). We humans are prodigiously adept at programming ourselves to fit tasks at hand. As

Clark (2009, p. 59) writes,

We do not just self-engineer better worlds to think in. We self-engineer ourselves to think

and perform better in the worlds we find ourselves in. We self-engineer worlds in which

to build better worlds to think in. We build better tools to think with and use these very

tools to discover still betters tools to think with.

A credible and worthy hope for education is to teach students to take the natural affor-

dances of our long-tuned perceptual systems, which are at their core spatial and dynamic,

and retask them for new purposes.

The end result of rigged-up perceptual systems is to have automatically deployed

attentional and interpretational processes (see also Shiffrin & Schneider, 1977). This

leaves open the question of automaticity of the development of these RUPS. The results

from the transfer of the competitive specialization principle are suggestive that RUPS

can be automatically developed as well as deployed; our students did not know that the

competitive specialization principle would be relevant for a second task and yet they still

created perceptual interpretations capable of transfer. Still, strategic control over the

development of RUPS seems not only possible but pedagogically important. When a

student knows that a particular interpretation or perceptual process supports a formal

principle, then he or she can actively provide inputs and reinforcement to aid the devel-

opment of the perceptual skill.

A RUPS perspective on pedagogical innovations potentially offers a new way of under-

standing why and how attempts to make difficult materials perceptually concrete may either

promote or interfere with their understanding. The existing literature is mixed, sometimes

suggesting that concrete or manipulative materials are useful for grounding abstractions,

280 R. L. Goldstone, D. H. Landy, J. Y. Son ⁄ Topics in Cognitive Science 2 (2010)



co-opting real-world knowledge, and motivating students (Carraher, Carraher, & Schlie-

mann, 1985; Glenberg, Gutierrez, Levin, Japuntich, & Kaschak, 2004; Verschaffel, Greer,

& De Corte, 2000), but other times suggesting that concrete materials limit generalization,

distract students from essential principles, and interfere with symbolic interpretations

(DeLoache, 1995; McNeil, Uttal, Jarvin, & Sternberg, 2009; Son & Goldstone, 2009b; Uttal,

Liu, & DeLoache, 1999). If we think of education as training perception, then using percep-

tually rich objects is beneficial, but it is critical to develop perceptual routines that operate

over these objects in effective ways. Typically, extraneous details of pedagogically moti-

vated objects should be eliminated lest students develop routines that perseverate on these

elements (McNeil & Jarvin, 2007). However, objects that invoke perceptual processes of

selection, grouping, scanning, focus, and binding—processes that bridge to exportable prin-

ciples—are likely to confer benefits. Diagrams are perceptual objects that are designed

exactly with an eye toward these kinds of cognitive benefits. Representational techniques

such as Euler Circles for logic, Cayley diagrams for group theory, and Feynman diagrams

for quantum field theory are widespread in science and mathematics education at all levels.

Often times, these techniques are construed simply as tools for translating abstract contents

into concrete and intuitive formats. However, the RUPS interpretation is that they are also

methods for changing perceptions so that students become sensitive to otherwise obscure

and esoteric properties of a situation (Cheng, 2002). It is not simply that these diagramming

processes can be used to explicate abstractions. The process of creating and perceptually

interpreting the diagrams can substitute for the abstraction.

In light of RUPS, we can return to the traditional position that abstract reasoning is often

times opposed to, and must overcome, potentially misleading perceptual resemblances. The

results reviewed here suggest the alternative position that formal sensibilities can educate

and enhance perceptual resemblances. Increasing reliance on rules and formal principles in

lieu of phased-out perceptual information is not the only developmental trajectory. We can

also modify our perceptual encodings so as to accord better with our formal understandings.

Returning to the example of marsupial and placental wolves introduced in the first para-

graph, the possibility raised by RUPS is for the biologist to develop informed, expert per-

ceptual encodings that distinguish between these genetically distant species. Just as parents

of identical twins show little difficultly distinguishing their children, learning perceptual

relations between the ureter, bladder, and birth canal allows biologists to immediately and

intuitively distinguish these animals. Scientific understanding does not merely trump the

perception of resemblances. Scientific understanding shapes the perception of resemblances.

The phenomena of RUPS offer exciting possibilities for novel methods of improving edu-

cational outcomes. Together with a growing number of other researchers (Glenberg et al.,

2004; Kellman, Massey, & Son, 2009; Kellman et al., 2008; Martin & Schwartz, 2005; Sch-

wartz & Black, 1996), we argue that a highly effective way of facilitating sophisticated

responding is by systematically training perception and action systems. Pedagogical

methods that focus only on deep conceptual understanding, without supporting the percep-

tual-motor grounding of these understandings, risk creating inefficient and possibly cogni-

tively inert knowledge. Pedagogical practices motivated by RUPS would include well-

designed activities to alter the perceived similarity of situations, so that once dissimilar but
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importantly related situations become phenomenologically similar to one another with

learning (Kellman et al., 2008). With techniques designed to promote perceptual learning,

an educated student would truly be experiencing and creating new worlds.
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