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Abstract 

 
The contributions to this special issue on cognitive development collectively propose 

ways in which learning involves developing constraints that shape subsequent learning.  

A learning system must be constrained to learn efficiently, but some of these constraints 

are themselves learnable.  To know how something will behave, a learner must know 

what kind of thing it is.  While this has led previous researchers to argue for domain-

specific constraints that are tied to different kinds/domains, an exciting possibility is that 

kinds/domains themselves can be learned.  General cognitive constraints, when combined 

with rich inputs, can establish domains, rather than these domains necessarily pre-

existing prior to learning.  Knowledge is structured and richly differentiated, but its 

“skeleton” must not always be pre-established.  Instead, the skeleton may be adapted to 

fit patterns of co-occurrence, task requirements, and goals. Finally, we argue that for 

models of development to demonstrate genuine cognitive novelty, it will be helpful for 

them to move beyond highly pre-processed and symbolic encodings that limit flexibility.  

We consider two physical models that learn to make tone discriminations.  They are 

mechanistic models that preserve rich spatial, perceptual, dynamic, and concrete 

information, allowing them to form surprising new classes of hypotheses and encodings. 
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Learning requires constraints. Gold (1967) and Chomsky (1965) formally showed 

that there are too many possible language grammars to learn a language in a finite 

amount of time, let alone two years, if there are no constraints on what those grammars 

look like. In a related analysis, Wolpert (1996) showed that there is no such thing as a 

truly general and efficient learning device.  To be an efficient learner, one must make 

assumptions about the kind of structure one is expecting to find.  Allegorically, if you are 

trying to find your favorite pair of socks and you only know that they are somewhere in 

your enormously large sock drawer, it will take you an enormously long time to find 

them.  Some constraints allow you to limit your search to particular regions.  Knowing 

that your socks are somewhere in the drawer means that you need never look anywhere 

outside it. Other, softer constraints simply determine an order in which the hypothesis 

space is searched. The physical structure of the drawer and the opacity of your socks 

incline you to consider the top of the drawer before the layers underneath. When the 

constraints coincide with reality -- your favorite pair of socks really is at the top – they 

can turn unsolvable problems into relatively simple ones.  Many problems in cognitive 

science, such as language learning and scene interpretation, apparently involve the 

cognitive equivalent of an infinitely large sock drawer, and hence require powerful 

constraints. 

Psychologists have applied the formal results on the need for constraints for 

development and learning, concluding that different domains (including language, but 

also physics, biology, quantitative reasoning, social relations, and geometry) have their 

own special structures which must be exploited if learning is to be efficient (Spelke & 

Kinzler, 2007).  Efficiently exploiting these kinds of structures entails having different 
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kinds of constraints for different domains.  The specific nature of many of these domains, 

and the corresponding nature of their internal constraints, was detailed in the contributed 

articles to the 1990 special issue of Cognitive Science devoted to structural constraints on 

cognitive development.  The current special issue of Cognitive Science could be 

considered a 20th anniversary homage to this previous special issue.  The contributions to 

the 2010 issue are no less concerned with constraints than the 20th century issue. 

  A deeper inspection of the current issue’s contents does, however, show an 

evolution in how cognitive developmentalists conceptualize constraints.  The articles in 

the 1990 special issue tended to posit internal constraints that paralleled structural 

characteristics of entities in particular evolutionarily important domains.  A couple of 

examples provide helpful reminders as to their general modus operandi.  Spelke (1990) 

argued that infants are constrained to assume that objects follow smooth trajectories 

through space and time.  This is an eminently reasonable assumption because objects do 

not typically pop into and out of existence spontaneously, but rather move smoothly and 

vary conservatively.  E. Markman (1990) argued that children need constraints on word 

meanings in order to learn them in a reasonable amount of time.  For example, children 

assume that a word refers to a whole object rather than part of the object, ceteris paribus.  

They assume that words refer to taxonomic kinds rather than thematically related objects.  

In addition, they assume that a word will refer to an unlabeled entity, which allows them 

to overcome the first two constraints if necessary. Keil (1990) argued that ontological 

knowledge is better described by a tree structure than by a set of arbitrarily overlapping 

clusters.  Predicates must apply to an entire subtree of a hierarchy, thus preventing “M” 

structures.  Children, internalizing this “M-constraint”, assume that if some things (like 
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mice) can fear but cannot be two hours long, and other things (like baseball games) can 

be two hours long but cannot fear, then there should not be still other objects that both 

fear and last two hours. 

These constraints all follow the same pattern of postulating an internal bias that 

fits well with an external exigency.  By this approach, we are capable of apt and efficient 

cognition because our internal structures have evolved over millions of years to reflect 

external structures of importance for survival (Shepard, 1984).  A common conclusion of 

this approach is that humans, or any other cognitive learning system, cannot be general 

learning devices or tabula rasas.  We need to have constraints like these built into us.  

Furthermore, because different aspects of the world manifest different structures, we need 

to have different evolutionarily-bestowed constraints for different domains.  Hence, 

Cosmides and Tooby (1992) compare the human mind to a “swiss army knife” of 

different tools that have each been adapted over evolutionary time to their task domain 

(see Twyman & Newcombe, 2010, for an extended discussion of this, and other, 

conceptions of modularity). 

The exciting possibility raised in various ways by the articles in the current 

special issue is that experience with a richly and diversely structured world can allow 

people to devise some of the constraints that they will then use to make learning more 

from the world more efficient.  While some constraints are surely provided by evolution, 

others can be acquired during an organism’s lifetime, and are no less powerful for being 

learned.  In fact, acquired constraints have the advantage of being tailored to an 

individual’s idiosyncratic circumstances. At a first pass, humans seem to live in the same, 

reasonably fixed world, suggesting that adaptation across generations would be most 
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effective.  Indeed, many general environmental factors, such as color characteristics of 

sunlight, the position of the horizon, and the change in appearance that an approaching 

object undergoes, have all been mostly stable over the time that the human visual system 

has developed. 

However, if we look more closely, there is an important sense in which people 

face different environments.  Namely, to a large extent, a person's environment consists 

of animals, people, and things made by people.  Animals and people have been designed 

by evolution to show variability, and artifacts vary widely across cultures.  Evolutionary 

pressures may have been able to build a perceptual system that is generally adept at 

processing faces (Bruce, 1998), but they could not have hardwired a neural system to be 

adept at processing an arbitrary face, say that of Barack Obama, for the simple reason 

that there is too much generational variability among faces.  Individual faces show 

variability from generation to generation, and variability is apparent over only slightly 

longer intervals for artifacts, words, ecological environments, and animal appearances.  

Thus, we can be virtually positive that hand tools show too much variability over time for 

there to be a hardwired detector for hammers.  Words and languages vary too much for 

there to be a hardwired detector for the written letter "A."  Biological organisms are too 

geographically diverse for people to have formed a hardwired "cow" detector.  When 

environmental variability is high, the best evolutionary strategy for an organism is to 

develop a general perceptual system that can adapt to its local conditions. 

These adaptations, once effected, act as constraints at different levels of 

specificity.  When adapting to a single person such as Barack Obama, our early 

expectations may constrain how we interpret his future actions and appearances. Learned 
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constraints have far wider implications when they are distilled from experiences with 

many different objects.   For example, Smith, Colunga, and Yoshida (2010) report earlier 

experiments that children extended a label by shape and texture when the objects were 

presented with eyes (signaling animacy), but extended the label by shape alone when the 

target and test objects were presented without eyes.  Likewise, for toys, children learn 

that shape matters, whereas for foods, material matters (Macario, 1991; see discussion by 

Sloutsky, 2010).  Some evidence that these biases are learned is indicated by results 

showing that laboratory training allows students to acquire some of these biases at an age 

before they normally emerge (Smith et al., 2002).  As a second example, Madole and 

Cohen (1995) describe how 14 month old children learn part-function correlations that 

violate real-world events.  18 month old children do not learn these correlations, 

suggesting that children acquire constraints on the types of correlations that they will 

learn.  As a final example, early language experience establishes general hypotheses 

about how stress patterns inform word boundaries (Jusczyk, Houston, & Newsome, 1999).  

Children are flexible enough to acquire either the constraints imposed by a stress-timed 

language like English or a syllable-timed language like Italian, but once they imprint on 

the systematicities within a language, they are biased to segment speech streams into 

words according to these acquired biases.  In all these cases, constraints are acquired that 

subsequently influence how children will learn other materials from the same domains. 

 

Learning Overhypotheses 

A learning system must have constraints on hypothesis formation in order to learn 

concepts in a practical amount of time, but a considerable amount of flexibility is still 
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needed because different people face different worlds and tasks.  Several of the articles in 

this special issue explore ways in which this dilemma can be resolved by making 

constraints themselves learnable.  One way to think about this possibility is in terms of 

Nelson Goodman’s (1954) notion of an overhypothesis, a hypothesis of the form “All As 

are B” where A and B are generalizations of terms used in any other hypothesis that we 

are interested in (Kemp, Goodman, & Tenenbaum, 2010; Kemp, Perfors, & Tenenbaum, 

2007).  One might have hypotheses that all dogs have four legs, all storks have two legs, 

and all worms have no legs.  Generalizing over both animals and leg number, one could 

construct an overhypothesis that “All animals of a particular type have a characteristic 

number of legs.”  The power of such a hypothesis is that upon seeing only a single six-

legged beetle, one can infer that all beetles have six legs.  Research indicates that adults 

employ probabilistic versions of overhypotheses such as these (Heit & Rubinstein, 1994). 

Kemp et al. (2010) present a quantitative, formal approach to learning 

overhypotheses.  Their Hierarchical Bayesian Framework describes a method for learning 

hypotheses at multiple levels, as with the legged animals example above.  

Representations at higher levels capture knowledge that supports learning at the next 

level down.  Learning at multiple levels proceeds simultaneously, with higher-level 

schemas acquired at the same time that causal models for multiple specific objects are 

being learned.  This mechanism allows Kemp to accommodate, at least in spirit, the 

examples of constraint learning described in the previous section.  Abstract knowledge 

supports causal learning involving specific objects, but critically, this abstract knowledge 

itself can be acquired by statistical learning.  Accordingly, it provides a way of learning, 

rather than simply declaring by fiat, the abstract domains that will govern causal 
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inferences.  Their schema-learning approach discovers causal types instead of stipulating 

them in advance.  As an example, it learns that there are two types of blocks – ones that 

activate a machine and ones that do not, modeling experiments reported by Gopnik et al. 

(2004).   

Kemp et al.’s models have multiple levels of abstraction, and so there might be a 

level that learns, for example, that pens are reliably pen-shaped and buckets are bucket-

shaped, that these might both belong to a higher level that groups them together as 

artifacts, and at this level the constraint can be expressed that all artifacts have a 

characteristic shape whatever that shape is, thereby acquiring a shape bias for artifacts 

(Smith, Colunga, & Yoshida, 2010).  Results like these suggest that association learning 

devices are crucially undervalued if we only focus on token-to-token associations.1  A 

child seeing a penguin is not just learning that penguins are black and white, but is also 

learning about relations between coloration, shape, behavior, climate, diet, and so on, for 

birds, animals, and natural kinds.   

These kinds of type-to-type associations do not release us from a dependency on 

constraints.  In fact, given the unlimited number of abstract descriptions applicable to an 

observed event, constraints become particularly important in directing us toward useful 

levels of abstraction.    For example, in the model presented by Kemp (2010), the space 

of higher-level causal models must be fully specified ahead of time, leading to strong 

constraints on what kinds of abstract models the system can learn. Still, because 

constraints at this higher level will presumably apply to any novel particular domain, they 

are best seen as constraints on how experience drives the construction of special domains.  

                                                
1 Kemp et al do not consider their models to be association learning, but the advantage of 
learning type-to-type relations can be exploited by non-Bayesian models. 
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The possibility of learning these type-to-type associations goes a long way toward 

severing the traditional connection between domain-specific constraints and innateness.  

Learning is not only caused by constraints, it causes constraints. 

Ample empirical evidence for the flexibility of constraints is provided by 

Sloutsky (2010).  For example, he reports recent experiments showing that people are 

highly flexible in attending to different features in different micro-contexts (Sloutsky & 

Fisher, 2008).  In one context, shape is relevant, and in another context color is relevant.  

When a context is reinstated, people selectively weight the contextually relevant 

dimension.  Impressively, this is achieved even with as minimal a manipulation of 

context as screen location and background color.  Other related demonstrations have 

shown that people will selectively attend to different stimulus dimensions as a function of 

contextual cues that are provided by the features of the stimuli themselves (Aha & 

Goldstone, 1992).  These manipulations of context fall short of genuine domains, but in 

some ways, the minimalism of the contextual manipulations is a strength.  If people can 

learn to attend to different properties with arbitrarily created and minimally different 

contexts, then certainly domains as different as geometry and social relations would have 

considerably more internal structure that could be leveraged to self-organize a division 

between them.   

Sloutsky suggests that contexts can be induced through a compression–based 

learning system even before a selection-based learning system has come on-line in an 

organism’s development.  This is particularly so for “dense” categories in which different 

dimensions are highly correlated with each other.  In practice, selection and compression 

will typically work in tandem, by creating categories that ignore some features (via 
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selection) while at the same time creating compact representations (via compression) that 

represent an assembly of co-occurring features by a centroid (Love, Gureckis, & Medin 

2004).   

One of the reasons why compression often seems to precede selection for natural 

categories is that selection requires that a categorizer has first differentiated their world’s 

objects into dimensions.  In some cases, early developed perceptual systems serve to split 

an object into separate dimensions.  However, in other cases, much later experience 

provides the impetus to differentiate otherwise fused dimensions (Goldstone & Steyvers, 

2001).  Experience informs not only contexts and objects as Sloutsky shows, but also the 

very descriptions along with the objects are encoded.  Statistics from the world can clump 

situations into contexts, objects into categories, and parts of an object into features.  Each 

of these clumps, once established, influences future learning. 

 Focusing on the development of infant visual perception, Johnson (2010) gives 

several compelling examples of learning to see as a constraint-creating activity.   He 

provides evidence that infants originally see their world in disconnected fragments, and 

that exposure to faces and objects is necessary for infants to eventually come to see 

entities like these as coherent.  In one reported paradigm, more 6- than 4-month-old 

infants show anticipatory eye movements that are initiated before a ball emerges from 

behind an occluder.  This suggests that spatiotemporal completion strengthens during this 

two-month period.  Once the infant learns to correctly anticipate where an object will be, 

they are better able to look in the right place to extract more information about the object. 

In this fashion, learning begets still more learning.  A large part of this rich-get-richer 

effect stems from the role that learning has in creating oculomotor patterns that 
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appropriately constrain future information acquisition, and consequently learning.  

Johnson describes another excellent example of this dynamic in the work of Needham 

and Baillergeon (1998).  Exposing infants to single or paired objects tends to lead the 

infants to parse subsequent events in terms of these familiarized configurations.  Infants 

initially exposed to a cylinder abutting a rectangular box showed relatively long looking 

times, suggesting surprise, if one of the objects subsequently moved separately from the 

other.  Consistent with many of the results described by Johnson, infants are surprisingly 

adept at adapting their perceptual systems to statistical regularities in their environment.  

As their visual systems become tailored to their world, they become constrained to see 

their world in terms of the regularities they have extracted.  However, rather than viewing 

these acquired constraints as limiting perceptual abilities, it is more apt to view these 

constraints as permitting the infant to see a coherent and well-behaved world (Medin et 

al., 1990). 

 

Active construction of entities and kinds 

Thus far, the argument has been that any organism that would learn efficiently needs to 

have constraints that apply to learning particular domains, but at least some of these 

constraints are learnable.  Different constraints can be simultaneously learned for 

different contexts, object classes, modules, and domains because entities in the world 

naturally form recognizable clumps. Psychology is still important because the natural 

world can be carved into domains in many different ways depending on needs and goals. 

These goals shape the kinds of clumps that will be formed, but this is different from 

claiming that the clumps are pre-formed.  Well understood mechanisms of self-
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organization allow modules to be constructed for classes of objects based upon their 

constraints (Elman et al., 1996).  By carving nature at its joints, clusters are formed such 

that the entities within a class are similarly constrained.  Furthermore, once formed, the 

clusters reinforce and emphasize the distinctions between the entities.  Joints are carved 

into nature where they were already incipient, making the joints sharper still (Lupyan, 

2005).  We do not need to start with domain-specific constraints. The specific domains 

can emerge from more domain-general principles of association, contingency detection, 

statistical learning, and clustering.  

The current issue’s articles propose a second way in which constraints are actively 

constructed rather than fixed.  In particular, another recurring theme is that people play an 

active role in creating the entities to be learned.  This theme is perhaps clearest in Chater 

and Christiansen’s (2010) arguments that language speakers shape their language over 

generations in ways that make it more easily learned by others.  Rather than language 

learning consisting of the acquisition of fixed structures in a natural, linguistic world, the 

task confronting language learners is typically one of “C-Learning” – simply learning to 

coordinate with other individuals.  This is a much easier task as long as the learner exists 

in a milieu in which the other individuals are generally configured similarly to the 

learner.  On this view, languages are evolving to be learnable, at the same time that 

people are evolving to learn language.  Language evolution assumes particular 

importance in this view, because languages change at a much faster rate than do genes.   

Certainly individuals still need to acquire their indigenous language, but this will be a 

language that has been rapidly evolved so as to be efficiently learnable by people with 

general perceptuo-motor, communicative and cognitive constraints.  The premise that 
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languages can evolve relatively quickly is supported by documented reports that 

Nicaraguan sign language emerged in as little as three decades within a community of 

deaf children with little exposure to established languages (Senghas, Kita, & Özyürek, 

2004).   

Casting language as C-learning does not trivialize its difficulty. If language were 

purely a problem of coordination, it could be solvable by creating a very simple language 

containing only one word.  But a language evolves under several distinct selection 

pressures, in addition to learnability.  A language should be easily comprehended once 

learned, so ambiguities and confusions may make a language less successful, even if 

easily learned.  Most important, a language must have sufficient power to express rich 

and structured thoughts.  Language evolution is thus not completely untethered. 

Nonetheless, language does provide an excellent case study of a domain that is 

configured by general human constraints rather than existing as a preconfigured domain 

requiring language-specific constraints to acquire it. 

Though focusing on language acquisition rather than language evolution, Smith, 

Colunga, and Yoshida (2010) nonetheless echo several of the themes raised by Chater 

and Christiansen.  Smith et al. again point to ways in which language is shaped by 

general cognitive constraints, including general attentional effects, the highlighting of 

novel cues that co-occur with novel outcomes, the illusory projection of cues that are 

associated with other cues but are not themselves present, and the construction of clusters 

reflecting correlated features (see also Sloutsky’s compression mechanism).  They show 

that language, as it is constructed by a child in a particular environment, reaches back to 

affect how that environment is coded.  Unlike English, Japanese makes no distinction 



 Domain-creating Constraints 
15 

between count and mass nouns.  However, giving Japanese children training with the 

kind of correlated linguistic cues that an English child might receive causes them to 

behave more as an English child might.  In particular, they generalize names for solid 

things by shape and nonsolid things by material, rather than the less sharply delineated 

generalization pattern for an average Japanese child.  Critically, this effect of linguistic 

training has a lasting influence on children even when the linguistic cues are no longer 

present.  Language is instrumental in establishing categories like count, mass, and 

animate nouns.  While scaffolded, in part, by language, these categories remain in place 

when the scaffold is removed.  It is this dynamic that leads Smith et al. to argue that 

children are forming the domains via which they will organize their world, and language 

both reflects and guides these acts of creative construction. 

 Applying this approach to domain-specificity, many of this issue’s articles pursue 

the possibility that domain-general constraints are sufficient to produce what eventually 

become, or simply appear to be, domain-specific constraints, including Chater and 

Christiansen (2010), Newcombe (2010), Sloutsky (2010), and Smith, Colunga, & 

Yoshida (2010).  Recall that the basis for the traditional link between domain-specificity 

and constraints lies in the idea that there are innate constraints associated with each kind 

of stuff – each domain, or area of “core knowledge” (Spelke & Kinzler, 2007).  Empirical 

evidence indicates that we do not need to start with domain-specific constraints.  The 

specific domains can come from more domain-general principles. Chater and 

Christiansen (2010) describe the existence of general cognitive routines for processing 

sequential information used in natural language reading and statistical learning; language 

is not as special as might have been believed. Some of the domain general processes that 
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they single out include encoding, organization, and production of temporally unfolding 

events.  These processes are useful for finding structures in language and visual 

sequences alike, and positing domain-general constraints helps to explain patterns of 

correlation between language and visual temporal processing.  Once it has been learned, 

language is highly constrained, but if we just look at the eventual constrained forms, it is 

easy to forget where they came from. 

 Likewise, for the domain of spatial navigation, Twyman and Newcombe (2010) 

argue that people, old and young alike, integrate across multiple cues, including featural 

cues, not just a single geometric module.  The apparently constrained nature of childrens’ 

navigation gives way to broader domain-general processes.  Even children can use 

curtain color, a cue not considered to be part of the “geometric module,” when the room 

is large and they have experience with the task.  We need to think about how cues are 

combined and integrated, which is both the bane and boon of domain-general processes.  

Information has to be combined across multiple sources, a process that is sometimes 

complex.  However, the complexity is often more than justified by the benefits conferred 

by mixing expert systems, and by having these expert systems simultaneously train each 

other (de Sa & Ballard, 1998). 

 

Adding Skeletons to Flesh 

An important plank of the new approach to developmental constraints espoused in 

this issue’s pages is that developing children learn to organize their world into the 

categories that they will use to guide their inferences.  This New School of Constraints 

agrees with the Old School on the basic principle that different properties are important 
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for different domains.  For example, Gelman and Markman (1986) present evidence that 

children generalize from biological properties to objects with the same superordinate 

name but a different appearance.  For the biological property “cold blooded,” children 

extend more inferences from triceratops to brontosauruses than to rhinoceroses.  However, 

for physical properties (like weighing 1 ton), they generalized more to the rhinoceros 

(which resembled a triceratops) than brontosaurus.  Heit and Rubinstein (1994) find that 

adults are as flexible as children, for example generalizing an anatomical property more 

from chickens to hawks than from tigers to hawks, but generalizing feeding and predation 

properties more from tigers to hawks.  Earlier, Nisbett et al. (1983) showed that reading 

about just one member of a tribe with a certain skin color makes people think that all of 

the tribe members have that skin color, but they are not as profligate with their inductions 

about the generality of obesity in the tribe upon seeing only one obese member. 

One possible conclusion from these kind of studies is that both children and adults 

come to their world already having broken it down into kinds of things, and this is critical 

because in order to know how something will behave, one needs to know what kind of 

thing it is.  Domains provide the skeleton on which to hang knowledge.   As R. Gelman 

(1990) writes, “I find it helpful to think of a skeleton as a metaphor for my notion of first 

principles.  Were there no skeletons to dictate the shape and contents of the bodies of the 

pertinent knowledge, then the acquired representations would not cohere” (p. 82). 

In referencing skeletons, Gelman clearly has in mind an a priori structure on 

which to hang experiential knowledge.  However, to the extent that we, the authors, find 

skeletons to be an apt metaphor for knowledge, it is only when we reflect on the fact that 

skeletons themselves are not a priori structures, but rather unfold with a developmental 
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process themselves, and are molded by need.  The tennis player John McEnroe’s right 

hand is significantly larger than his left hand, because his skeleton and musculature are 

not a priori givens.  In general, bone mineral content is greater in the dominant arm of 

professional tennis players than in their contra-lateral arm, but not so for a control group  

(Calbert et al., 1998).   Tennis players’ literal skeletons have adapted to fit their tennis 

requirements.  Neural network models provide working examples of skeletons forming 

because of the inputs provided to them.  Bernd Fritzke’s (1994) Growing Neural Gas 

model provides a compelling example of this.  When inputs are presented, edges are 

grown between nodes that are close to the input, and new nodes are created if no node is 

sufficiently close to the input.  The result is a skeleton that can aptly accommodate new 

knowledge because it was formed exactly in order to accommodate the knowledge.  This 

skeleton-creating approach appears also in “Rethinking innateness” (Elman et al., 1996), 

where one of the primary ideas is that the existence of modularity does not implicate 

innateness.  Modules can be learned because systems can self-organize themselves to 

have increasingly rich and differentiated structure. 

Computational modeling suggests that the eventual specialization of a neural 

module often belies its rather general origins (Jacobs, Jordan, & Barto, 1991). Very 

general neural differences, such as whether a set of neurons has a little or a lot of overlap 

in their receptive fields, can cause the two populations of neurons to spontaneously 

specialize for handling either categorical or continuous judgment tasks, or snowball small 

initial differences into large-scale “what” versus “where” visual systems (Jacobs & 

Jordan, 1992).  At a higher level of abstraction, self-organizing neural network models 

have been proposed that account for how originally undifferentiated concepts become 
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differentiated and increasingly structured with development (Rogers & McClelland, 

2008).  Without belaboring the details of these models, there are a sufficient number of 

examples of skeleton-creating working models to believe that to know how something 

will behave, one needs to know what kind of thing it is, but that these kinds can emerge 

through the progressive differentiation of objects into domains with experience. 

 

Getting Physical about Constraint Learning 

To our mind, the articles in this special issue offer true advances in our understanding of 

cognitive constraints as developing over a person’s lifetime.  However, in the interest of 

urging the field to not rest on its laurels, we wish to point out that the models that have 

been presented to make this point strike us as incorporating input representations that are 

highly pre-processed and symbolic.  This modeling decision hampers the models from 

producing as novel constraints and representational capacities as they otherwise might. 

First, let us give some examples of what we feel are modeling choices that 

constrain too tightly the kinds of constraints that can be induced.  Kemp et al.’s (2010) 

model succeeds in simultaneously learning object-level causal models, category-level 

causal models, and the categories that occupy the upper levels.  However, to achieve 

these, the authors assume that the learner already has divided the world into domains (e.g. 

people and drugs) and events (e.g. ingestion and headache events).  Furthermore, it is pre-

built to learn causal models that relate the ingestion of drugs to headaches.   Finally, 

actual events like “has headache” are pre-coded as atomic, non-decomposable symbols.  

There is no perceptual apparatus that grounds objects, events, or causal relations, and 

hence no way to adapt perceptual processes to establish new kinds of entities.  To be fair, 
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the authors admit all of these constraints, and gesture to some possible ways of adding 

flexibility to their model. 

To take a second example from a different modeling tradition, Rogers and 

McClelland’s (2004, 2008) neural network model is an attempt to understand how 

domain-specific knowledge emerges solely from general learning principles.  In this 

sense, it fits well within the current articles’ leitmotif that pre-established constraints on 

pre-established domains is not required to account for the eventually structured form of 

cognitive representations.  The particular structures that their PDP model, trained by 

back-propagation, acquires are: progressively differentiated concepts, coherent categories 

characterized by clusters of co-occurring features, conceptual reorganization over time, 

and domain-specific attribute weighting.  Their system takes as input statements like 

“Canaries can fly” and “Canaries can grow” and creates emergent and shifting clusters 

for different kinds of animals and attributes.  From the perspective of learning 

constraints, though, we feel that the input representations are limiting.  Single nodes are 

dedicated to each element in a proposition, such as “Canaries,” “Can,” and “Fly.”  These 

nodes are not connected to a physical world via a perceptual system, so once again, there 

is no perceptual system to adapt. 

A natural response to our objection is “One has to start somewhere.  Progress can 

be made on constraint learning without accounting for the organism’s relation to its 

world.”  We do not deny that some progress can be made, but at the same time we feel 

that the most compelling examples of learning new objects and domains come exactly 

from situations where the organism’s embedding in the world is rich, high-bandwidth, 

and dynamic (Beer, 2008).  In this respect, we are in agreement with Johnson (2010) and 
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Smith, Colunga, and Yoshida (2010). 

 

Case studies of novel constraint-generation in physical systems 

To show the kinds of novel objects and constraints that can emerge in situated 

systems, we will consider two working, physical devices, without asserting that they are 

formal models of learning.  Figure 2 shows the first physical model, developed by 

Gordon Pask (1958), which features electrodes immersed in a dish containing a ferrous 

sulfate solution.  Passing current through the electrodes caused dendritic metallic 

filaments to grow as precipitates from the fluid.  Ferrous filaments could be adaptively 

grown to make the system sensitive to sounds.  Early on the system could only detect the 

presence or absence of sounds, but once filaments grew that joined electrodes and 

changed electrical conductance, the device was able to discriminate two frequencies.  The 

conducting filament pathway is shaped by exactly the vibrational perturbations that it 

detects, and how it detects the perturbations is changed by its growth.  This device has the 

capacity to represent things, like the difference between tones of 50 and 100 

cycles/seconds, which it was not originally able to represent.  This kind of model 

provides a compelling existence proof for a system that creates its own constraints – 

constraints that were not originally there before a certain physical connection was made.  

It is a device that, when (literally) immersed in the proper environment, develops its own 

concept of what is relevant. 

Our second example is a physical device meta-designed to accomplish, perhaps 

coincidentally, a similar tone discrimination task. For this task, Thompson, Layzell, and 

Zebulum (1999) employed a FPGA (Field-Programmable Gate Array) containing a 10 X 
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10 array of programmable logic components called “logic blocks.” The logic blocks 

consist of multiplexers that act like switches to determine input-output relations between 

blocks.  A computer is used to configure the multiplexers by sending them a stream of 

bits, thereby causing the multiplexer to physically instantiate a particular electronic 

circuit on the chip.  FPGAs are thus integrated circuits with hardware that can be 

configured to specify how the logic blocks are connected to each other.  Thompson et al. 

used a genetic algorithm to randomly alter the hardware of the FPGA, and then tested to 

see how well the resulting, automatically configured FPGA could accomplish the task of 

discriminating between 1 KHz and 10kHZ square wave tones.  After 5000 generations, 

the FPGA could solve the task well.  The best performing hardware design is shown in 

Figure 3.  In this figure, the upper-left panel shows the entire set of connections among 

the logic blocks.  However, because a random genetic algorithm was employed, there is 

no guarantee that this FPGA is actually a coherent electronic circuit at all.  In fact, it was 

not, and some of the logic blocks are not part of the logical circuit of the FPGA that 

classifies a tone as high or low.  These pruned blocks are not part of any connected 

pathway that connects to the output units.  Pruning these blocks yields the upper-right 

panel.    The remaining blocks are part of the logical circuit and could influence the 

FPGA’s output, but that is no guarantee that they do.  The authors clamped the values of 

each of the full 10 X 10 set of blocks – both those that were and were not included in the 

pruned circuit -- to determine if a block did ever influence outputs.  Removing the largest 

set of blocks that can be clamped without affecting performance from the electrical 

diagram results in the lower panel of Figure 3.  Comparing the two methods of paring 

down the full 10 X 10 array of blocks reveals a surprising pattern.  Some blocks (shown 
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in gray) that were not part of logical circuit of the evolved solution are nonetheless 

important for the FPGA’s success at the task.  When they are clamped to constant but 

random selected values, performance suffers, hence they influence the circuit’s behavior 

and quantifiable performance.  Furthermore, when only the logical circuit is implemented 

in a new, nominally identical FPGA, it no longer solves the task as well as the original 

circuit did.  Likewise, a digital simulation of the evolved FPGA’s circuit did not produce 

correct behavior. 

This apparent contradiction is reconciled by understanding that although the 

FPGA is a digital chip, it also has analog properties as a physical device. Conventional 

digital circuit design makes the assumption that a given block will output only one of two 

states at any give time, when actually there are transition periods.  The “digital 

assumption” has the prominent advantage that it allows us to think in terms of a logic 

algebra.  However, the multiplexer switches work according to laws of semiconductor 

physics.  The circuit changes as a real-time, continuous valued electrical system.  For 

some of the cells that are part of the functional, but not logical, circuit, inputs are routed 

into them from the active circuit, but their outputs are not used by the active network. 

These cells influence the timing of the signals routed through or near them. If the 

configuration of the gray cells is changed, this affects the capacitance of these routes, and 

hence the time delays for signals to travel along them.  These signals include not only 

on/off states, but transitional values between these two states which are normally 

considered the only possible states in formal electronics.  Thus, the cells that are not part 

of the logical circuit can still change the timing of the rest of the circuit by influencing 
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their transient states, and the tone discrimination task is highly dependent on timing, so 

these changes are functionally important. 

 

Reliably traumatic learning in physical systems 

With these two examples in mind, we can address a question core for the field of 

cognitive development: How can systems develop genuinely new cognitive capacities?  

One answer is simply that they cannot. Fodor (1980) argues that learning a new concept 

necessarily involves first hypothesis formation and then testing the formed hypothesis.  

Therefore, a person could not acquire a new concept unless they already had the ability to 

represent its hypothesis.  Learning can determine whether the hypothesis is true, but the 

fundamental ability to represent the hypothesis cannot be learned.  If a person can learn 

that a square is a four sided object with all angles equal and all sides equal, then it must 

be because the person already had the wherewithal to represent concepts like “four,” 

“angles,” and “equal.”  A system can increase its representational power by “physical 

trauma” like a blow to the head, but not through formal inductive learning processes.  

Inductive learning does not increase a system’s representational “vocabulary” because 

mechanisms must already have been in place to express the “new” vocabulary, and so it 

has not been genuinely created. 

A related argument is presented by Kemp et al. (2010) in defending their 

approach from the criticism that their model does not learn or discover causal schemata, 

but rather only selects one schema from a pre-specified space of hypotheses.  Kemp et 

al’s response is that from a computational perspective, every learner begins with a pre-
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specified hypothesis space that represents the abstract potential of the learner.2  This 

hypothesis space includes all reachable states of knowledge given all possible empirical 

inputs.  Both Fodor’s and Kemp et al’s arguments take the form: True novelty is 

impossible because all hypotheses (or their components, for Fodor) must exist to be 

(eventually) selectable. 

Pask’s device tidily points out the simplistic nature of this argument.  There may 

be a sense in which all discriminations that the device can learn are present in the device 

when it is first constructed.  However, that is only the same trivial sense in which all 

organs of all life forms that currently inhabit the planet were present in the earliest 

bacteria.  This trivializes the physical changes that allow Pask’s device to represent 

distinctions between sounds that it was originally unable to make.  These physical 

changes may be dismissed as “trauma” but they are nonetheless highly systematic, much 

as are the actual physical changes in the brain that lead to long-term potentiation across 

the synapse between two neurons that are co-stimulated.  The physicality of the change in 

Pask’s device makes it instructively clear that at one point in its development, prior to the 

existence of a conductive filament that has grown to connect two electrodes, it is 

incapable of making a sound discrimination, but that after the physical change has 

transpired, it is capable. 

We agree with Kemp et al. (2010) that a formal model of learning must originally 

contain all the hypotheses it will eventually be able to entertain.  It is important to 

                                                
2 The authors also argue that this computational-level response, though correct, could also 
be supplemented by algorithmic-level accounts that provide a process model for creating 
hypotheses.  The authors do not provide such an account.  We are arguing for far greater 
attention to algorithmic level, and even implementational level, process accounts of how 
new hypotheses are constructed in the first place.  Attention to these levels is what allows 
truly emergent novelty to arise in a system. 
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remember, though, that formal models are not the same thing as working, rigorous, and 

replicable models.  Thompson’s FPGA and Pask’s device may well be models of the 

latter kind, and they offer the kind of physical models that may well be needed to yield 

genuine novelty with development.  Thompson’s evolved FPGA clearly shows the 

disadvantage of honing too closely to a formal algebra.  The formal model systematically 

eliminates the possibility of discovering solutions to the sound discrimination task that 

are outside of the digital circuit framework.  When the evolved circuit is reduced to its 

formal form, it no longer solves the task.   

A physical device such as Thompson’s FPGA can have more than one appropriate 

formal idealization. No doubt there is a more elaborate formal logic that captures via 

explicit representation the temporal properties of the FPGA, just as a sufficiently 

complex formal model could capture the chemical properties of Pask’s device.  Such a 

richer model could well solve the tasks these physical devices do, and all the capabilities 

of these devices would then be implicitly contained in that formal description. But, 

crucially, in order to design that formal model, one would have to know just which 

physical properties mattered to the behavior of interest.  From this perspective, to observe 

that all of the possible hypotheses that can be entertained by a formal system are already 

implicit in the definition of the system is akin to noting that by the time one can build a 

satisfying formal model, one must already know how the real system works.  On the 

other hand, a physical model or a model with rich, high-bandwidth connections to an 

external physical environment can exhibit properties that are not contained in any pre-

existing conceptualization. The moral, for us, is that we want our models, like our 

children, to be sufficiently flexible that they can surprise us with solutions that we had 
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not anticipated by our formal analyses. 

 

Constraint generation by interacting with other physical systems 

Physical interactions with an external environment may also play a role in 

constructing and constraining a hypothesis space. Several recent models of high-level 

cognitive activities depend on the routine application of deictic representations (cf. Agre 

& Chapman, 1987; Ballard et al. 1995). For instance, Patsenko and Altmann (2009) 

describe a model of the process of solving the Towers of Hanoi.  This is a 

quintessentially high-level task, but Patseno and Altmann’s  model performs remarkably 

little reasoning.  Instead, a quite simple control system defines a method for manipulating 

visual pointers and physical objects.  Assuming a reliably stable external environment, 

this control system, which includes rules for updating referential representations, suffices 

to perform the Towers of Hanoi task in a manner that closely matches human behavior. 

Landy, Jones, Goldstone (2008) suggested similarly that deictic representations might 

drive human syntactic judgments in formal arithmetic.  

To the extent that reasoning depends on deictic representations of this kind, the 

ability of an agent to maintain and coordinate multiple referential symbols provides a 

natural constraint on the kinds of hypotheses that can be maintained.  There is little 

reason to think of the maintenance of these referential pointers as a purely internal, 

representational process.  Rather, to the degree that hypotheses are represented via 

interactions with external representations, maintenance of those hypotheses depends both 

on internal resources, and on various physical properties of the interacting systems, the 

external environment, and the ability of the agent to manipulate that environment (Kirsh, 
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1995).  In this case, the constraints that limit the hypotheses that can be constructed are 

encoded in the physical structure of the environment and agent-environment interactions.  

In some cases, hypotheses themselves may be built out of environmental 

components, with the result that constraints on one’s ability to construct physical analogs 

will limit and constrain the hypothesis space that can be constructed. 17th Century 

physicists generated their hypotheses about physical phenomena by mapping them onto 

known physical mechanisms (Bertolini Meli, 2006).  Nersessian (2010) suggested that 

the physical models engineering scientists construct often serve a role in the generation 

and representation of hypotheses: reasoners construct a physical model, which serves 

both as an object of study, and as a repository for theory.  Given that the physical 

instantiation is not well understood, making a prediction from the theory may require 

consulting – running – the model.  When hypotheses are partially external constructs, our 

ability to form hypotheses will be constrained not just by the limitations of a predefined 

hypothesis space intrinsic to an agent, but also by our practical ability to build particular 

physical models that instantiate theories.  For example, if a particular neural network is 

too complex to build, or would take to long to run on an available computer, one may 

well simplify it. The physical, external constraints limit the available hypothesis space in 

a manner neither fixed nor internal, but nevertheless quite restrictive.   

 

Conclusions and caveats to the novelty that physical systems permit 

To the extent that concepts like squares and angles are rooted in one’s ability to produce 

and perceive physical models of squares and angles, one’s hypothesis space is at least 

softly constrained by the ability to coordinate fingers, limbs, and counting procedures. No 
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less than scientists, children are situated, physical systems, and their physical presence is 

critical to their ability to develop their own constraints, and to increase their own 

representational capacities.  This does not mean that we eschew computational and 

mathematical models of cognitive development because of their lack of physicality.  

However, we do recommend efforts to move beyond models, be they connectionist or 

Bayesian, that severely constrain the hypothesis space (Landy & Goldstone, 2005).  We 

advocate models that preserve enough rich spatial, perceptual, dynamic, and concrete 

information for surprising new classes of hypotheses and encodings to emerge.  We 

believe the hard problem for cognitive development will not be selecting from hypotheses 

or creating associations between already delineated elements, but rather constructing 

hypothesis spaces and elements in the first place. 

 We have argued for interpenetrations between people and their environments, and 

between the physical and functional descriptions within learning devices such as people.  

Furthermore, we have argued that these interpenetrations are crucial in developing 

learning systems that create genuinely new hypotheses, not just permutations of pre-

established symbols.  However, a critic might point out that these interpenetrations make 

for fault-prone and noise-intolerant devices. Thompson et al. (1999) not withstanding, 

most current electronics are designed to behave digitally precisely to provide tolerance to 

superficial variation in voltage signals that are irrelevant to the critical information.  Even 

“squishy” organic life as we know it owes its longevity to a genetic code that closely 

approximates a digital code consisting of nucleotides and codons.  Complex cellular 

machinery is dedicated to assuring that the code is relatively inert, and is protected from 

many contextual influences (Rocha & Hordijk, 2005). It is reasonable to think that our 
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cognitive system benefits from the same strategy of developing reusable, quasi context-

independent codes (Dietrich & Markman, 2003).  Much of the benefit of discrete codes is 

exactly that they are not buffeted about by extraneous contextual influences. 

 We agree that systems that behave reliably often have evolved to have 

representations that are mostly sealed off from lower or outside pressures.  Simon (1969) 

called such systems with multiple, encapsulated levels “nearly decomposable,” and we 

agree with their importance in cognitive systems, but wish to equally emphasize the 

importance of the qualifier “nearly.”  If Thompson et al. (1999) had designed electrically 

“cleaner” circuits with proper electrical shielding around cells, then their system would 

not have been able to evolve the same solutions to the sound detection problem based on 

influences of electric flow on nearby capacitances. Analogous advantages are found for 

systems that coordinate with their physical environment to solve problems that they could 

not otherwise solve.  The advantage of creating new representations by recombining 

existing codes is too powerful to forego.  However, systems are still more flexible when 

this combinatorial flexibility is extended by interpenetrations across levels and systems. 

 

Conclusion 

A good deal of cognitive development circa 1990 involved delineating specific 

constraints in domains such as language, motion, quantitative reasoning, social 

perception, and navigation.  This focus on domain-specific constraints has now shifted to 

domain-creating constraints, and an interest in how general learning processes can give 

rise to learned domains, dimensions, categories, and contexts. This new movement need 

not argue that all domains are constructed.  The major claim is simply that children need 
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to learn to learn, and a key component of this second-order learning is organizing their 

world into kinds of things that are similarly constrained.  If these caricatures3 of the past 

and present of cognitive development bear any resemblance to actual history, then our 

speculative claim for the future of cognitive development research is that it will push to 

describe how genuine cognitive novelty arises.  We expect that these efforts will not all 

be formal in the sense of involving only rules for manipulating symbols.  However, they 

can still be rigorous and mechanistic, providing working models for how things like 

concepts, domains, and formalisms themselves arise. 

                                                
3 One respect in which we acknowledge the caricatured nature of our historical 
comparison is that even in the 1990s, there was considerable interest in domain-general 
learning, and the notion that early constraints can serve to bootstrap the development of 
more sophisticated properties and constraints subsequently (Keil, 1990; Spelke, 1990). 
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Figure 1.  In Fritzkeʼs (1994) Growing Neural Gas Model, the skeletal structure of 
the network is formed by the inputs themselves. Figure adapted with permission 
by the author. 
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Figure 2.  Gordon Paskʼs electromagnetic ear.  Dendritic filaments of ferrous 
sulphate (marked as E) grow to connect originally disconnected electrodes.  The 
circular wires are a support frame.  Reprinted with permission.
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Figure 3.  A schematic description of FPGA circuits evolved by Thompson, Layzell, and 
Zebulum (1999) to solve a tone discrimination task.   The upper left circuit shows the 
electrical flow diagram of the FPGA unit that has been evolved to successfully solve the tone 
discrimination task.  The upper right circuit shows the pruned diagram that removes all of the 
blocks that have no connected pathway that could have affected the output.  The lower 
circuit shows the functional part of the circuit that remains after the largest possible set of 
cells has been clamped without affecting performance.  In the lower circuit, the gray cells are 
cells that influence the output but are not part of the logical circuit. 
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