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ABSTRACT

The idea that cognitive development involves a shift towards abstraction has a long history in psychol-
ogy. One incarnation of this idea holds that development in the domain of mathematics involves a shift
from non-formal mechanisms to formal rules and axioms. Contrary to this view, the present study pro-
vides evidence that reliance on non-formal mechanisms may actually increase with age. Participants -
Dutch primary school children - evaluated three-term arithmetic expressions in which violation of for-
mally correct order of evaluation led to errors, termed foil errors. Participants solved the problems as part
of their regular mathematics practice through an online study platform, and data were collected from
over 50,000 children representing approximately 10% of all primary schools in the Netherlands, suggest-
ing that the results have high external validity. Foil errors were more common for problems in which for-
mally lower-priority sub-expressions were spaced close together, and also for problems in which such
sub-expressions were relatively easy to calculate. We interpret these effects as resulting from reliance
on two non-formal mechanisms, perceptual grouping and opportunistic selection, to determine order
of evaluation. Critically, these effects reliably increased with participants’ grade level, suggesting that
these mechanisms are not phased out but actually become more important over development, even when
they cause systematic violations of formal rules. This conclusion presents a challenge for the shift
towards abstraction view as a description of cognitive development in arithmetic. Implications of this

result for educational practice are discussed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The idea that cognitive development involves a shift towards
abstraction has a long history in psychology (Gentner & Toupin,
1986; Gentner, 1988, 2003; Keil & Batterman, 1984; Keil, 1989;
Piaget, 1952; Rattermann & Gentner, 1998; Vygotsky, 1962). This
shift supposedly involves decreasing reliance on perceptual fea-
tures and details of context, and increasing reliance on abstract
features and context-free rules. In academic disciplines such as
mathematics and physics, the development of expertise as a result
of education and experience has also been described in terms of a
shift towards abstraction (Chi, Feltovich, & Glaser, 1981; Chi &
VanLehn, 2012; De Lima & Tall, 2008; Novick, 1988; Tall, 1995,
2008). However, some researchers have challenged the notion of
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a shift towards abstraction on both theoretical (Keil, Smith,
Simons, & Levin, 1998) and empirical (Bulloch & Opfer, 2009)
grounds, or even proposed that a shift in the opposite direction
may occur (Simons & Keil, 1995; Varma & Schwartz, 2011).

The present study provides evidence that in the domain of sym-
bolic arithmetic, the influence on performance of formally extrane-
ous perceptual and contextual details increases with age and
experience, suggesting that development in this domain cannot
be fully characterized in terms of a shift towards abstraction. Arith-
metic is an attractive domain for investigating this issue for at least
two reasons. First, there exist explicit formal rules constraining
correct performance in arithmetic, so it is natural to suppose that
arithmetic competence consists precisely in following these rules,
and that the development of such competence involves a shift
towards such formal rule-governed behavior. Thus, one might
expect arithmetic to be a likely domain for showing a developmen-
tal shift towards abstraction. Secondarily, arithmetic is of immense
practical importance, due to its direct utility in a wide range of


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2016.01.004&domain=pdf
http://dx.doi.org/10.1016/j.cognition.2016.01.004
mailto:baixiwei@gmail.com
http://dx.doi.org/10.1016/j.cognition.2016.01.004
http://www.sciencedirect.com/science/journal/00100277
http://www.elsevier.com/locate/COGNIT

D.W. Braithwaite et al./Cognition 149 (2016) 40-55 41

other domains as well as its foundational role in higher mathemat-
ics. Understanding the nature of learning and development in
arithmetic has the potential to inform instructional design and
thereby improve educational outcomes.

We focus more specifically on the evaluation of complex arith-
metic expressions — that is, expressions involving multiple opera-
tions. Intuitively, such expressions could be evaluated by
selecting and evaluating simple sub-expressions until a single
value is reached. For example, faced with the complex expression
“1+3x2,” one might first evaluate “3x2” as “6,” then “1+6” as
“7.” The processes underlying evaluation of simple arithmetic
expressions (e.g. “3x2” and “1+6”) are well-understood, and
include counting-based strategies, calculation algorithms, and
retrieval from memory (Brissiaud & Sander, 2010; Miller,
Perlmutter, & Keating, 1984; Moore & Ashcraft, 2015; Shrager &
Siegler, 1998; Siegler & Stern, 1998). Less well-understood are
the mechanisms by which simple sub-expressions are selected
and prioritized for evaluation in the first place. For instance, in
the above example, how does one decide to begin by evaluating
“3x2" rather than “1+3?” We first describe three mechanisms that
could support such selections: syntactic parsing, perceptual
grouping, and opportunistic selection. We then discuss the possible
roles of these mechanisms over the course of learning and
development.

1.1. Mechanisms

1.1.1. Syntactic parsing

In syntactic parsing, evaluation of complex expressions is pre-
ceded and guided by their syntactic structure, which is determined
according to formal rules of syntax. For example, applying rules of
operator precedence to the expression “2+7x5” would allow one to
identify “7x5” (but not “2+7”) as a syntactic phrase within the lar-
ger expression. This simpler sub-expression could then be evalu-
ated directly via retrieval from memory. As another example,
applying the rule for left-to-right evaluation among operators of
equal precedence to the expression “25-13-3,” one would identify
“25-13" (but not “13-3") as a syntactic phrase, which could then
be evaluated.

Consistent with such a mechanism, adults trained in arithmetic
and algebra are sensitive to syntactic structure (Jansen, Marriott, &
Yelland, 2003; Schneider, Maruyama, Dehaene, & Sigman, 2012).
During scanning of complex arithmetic expressions, adults’ gaze
trajectories quickly move to the sub-expressions deepest in the
syntactic hierarchy and thereafter proceed upwards along the syn-
tactic tree (Schneider et al., 2012), suggesting that syntactic struc-
ture is extracted quickly and automatically. Further, after viewing
complex algebraic expressions, sub-strings that constituted syn-
tactic phrases within the expressions are recalled more easily than
sub-strings that did not constitute syntactic phrases (Jansen et al.,
2003). Apparently, syntactic structure influences encoding and
subsequent recall of algebraic expressions. Several computational
models assume that human processing of algebraic expressions
begins with, and is subsequently guided by, syntactic parsing
(Anderson, 2005, 2009; Jansen, Marriott, & Yelland, 2007).

1.1.2. Perceptual grouping

In perceptual grouping, as in syntax-based processing, evalua-
tion of complex expressions begins with identification of simpler
sub-expressions, but perceptual constraints rather than formal
rules determine which symbols are grouped together to form
sub-expressions (Landy, Allen, & Zednik, 2014). There is strong evi-
dence that at least one such constraint — a tendency to group
together symbols that are physically close to each other, consistent
with the Gestalt principle of proximity (Wertheimer, 1938) — does
indeed influence processing of symbolic expressions in arithmetic

and algebra (Jiang, Cooper, & Alibali, 2014; Kirshner, 1989; Landy &
Goldstone, 2007b, 2010). For example, violations of operator prece-
dence rules are more common with expressions in which the oper-
ands surrounding a lower-precedence operator are more narrowly
spaced than those surrounding a higher-precedence operator, as in
“2+7 x 5” (Landy & Goldstone, 2010). Apparently, the perceptual
constraint that closely-spaced symbols are more likely to be per-
ceived as groups can sometimes override the formal rules that
determine syntactic structure.

Importantly, while perceptual constraints may cause violations
of formal rules, perceptual processing does not in general preclude
formally correct performance. The reason is that perceptual con-
straints are flexible, and may evolve over time to come into closer
alignment with such formal rules (Goldstone, Landy, & Brunel,
2011; Goldstone, Landy, & Son, 2010). For example, there is some
evidence that adults experienced with arithmetic perceive
higher-precedence operator symbols (e.g. x, +) as more visually
salient than lower precedence ones (e.g. +, —; Landy, Jones, &
Goldstone, 2008). These differences in salience could lead to pref-
erential grouping of operand symbols surrounding higher-
precedence operators, resulting in formally correct order of evalu-
ation. More generally, practice with symbol systems could lead to
the development of automatic perceptual routines that effectively
implement syntactic rules, without representing such rules explic-
itly. Consistent with this possibility, in a recent neuroimaging
study, participants viewing arithmetic expressions of varying syn-
tactic complexity showed effects of syntactic complexity on BOLD
response in brain areas relating to early visual processing, while
such effects were not found in areas associated with language
(Maruyama, Pallier, Jobert, Sigman, & Dehaene, 2012; see also
Friedrich & Friederici, 2009; Monti, Parsons, & Osherson, 2012;
but see Scheepers et al., 2011).

1.1.3. Opportunistic selection

Opportunistic selection refers to prioritizing for evaluation sub-
expressions which are relatively easy to evaluate. For example, in
evaluating “25 + 13 - 3” one might begin by evaluating the sub-
traction (“13 - 3”) because it is easier to evaluate than the addition
(“25+13"). Opportunistic selection yields a formally correct
answer in this case (13 - 3 =10, 25 + 10 = 35), but not in all cases.
In the similar problem “25 - 13 - 3,” evaluating “13 - 3” first vio-
lates the rule of left-to-right order of operations and so yields an
error.

There is some evidence that opportunistic selection does occur,
and can even override formal rules of arithmetic. Linchevski and
Livneh (1999; Herscovics & Linchevski, 1994) found that students
frequently commit errors like that just mentioned, justifying their
procedures by appeals to convenience (e.g. “when you do [opera-
tion] first, it becomes much easier”). However, these findings are
not entirely conclusive for present purposes because the errors in
question may have resulted from random slips, with convenience
mentioned only as a post hoc rationalization. The present study
addressed this possibility by comparing rates of order-of-
operations errors between similar problems in which the (for-
mally) low-priority sub-expressions either were or were not par-
ticularly easy to evaluate. Higher error rates for the former type
of problem would provide strong evidence that opportunistic
selection does occur and can override formal syntactic rules.

An important difference between opportunistic selection and
syntactic parsing relates to the types of information to which they
are sensitive. Because the ease of evaluating sub-expressions
depends on the specific numbers involved, opportunistic selection
is necessarily sensitive to the values of these numbers. Syntactic
parsing, by contrast, depends only on syntactic structure, not on
content, and should therefore be insensitive to the number values
involved in an expression. This insensitivity to number values is
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implicit in the computational models of algebra processing men-
tioned earlier' (Anderson, 2005, 2009; Jansen et al., 2007) and expli-
cit in a recent model of arithmetic processing (Maruyama et al.,
2012). Maruyama et al. (2012) proposed that such processing begins
with a syntactic stage, in which syntactic structure is determined
based on the positions and identities of bracket and operator sym-
bols. Number symbols are only processed in the second, semantic
stage, during which sub-expressions are evaluated in an order con-
sistent with the extracted structure. The model is supported by the
results of Schneider et al. (2012), which suggest that syntactic struc-
ture is already available to determine the sequence in which gaze
fixations proceed through arithmetic expressions. Additionally,
Maruyama et al. (2012) found that people more easily detect
changes to operators when these were embedded in syntactically
valid sub-expressions rather than invalid substrings, while detection
of changes to number symbols showed no such influence, suggesting
that operators are incorporated into the perceived structure more
quickly than are numbers.

Despite this evidence, people do not always separate syntax and
semantics as cleanly as Maruyama et al.’s (2012) proposal implies.
During construction of algebraic and arithmetic expressions to rep-
resent situations, the semantic content of the situations influences
the syntactic structure of the created expressions (Bassok, Chase, &
Martin, 1998; Bassok, Wu, & Olseth, 1995; Fisher, Borchert, &
Bassok, 2011; Martin & Bassok, 2005). The values of the numbers
involved are among the semantic cues that exert such an influence
(Bell, Fischbein, & Greer, 1984; Bell, Swan, & Taylor, 1981;
Brissiaud & Sander, 2010; Fischbein, Deri, Nello, & Marino, 1985).
For example, Bell et al. (1984) asked 12 and 13 year old students
to write arithmetic calculations that would yield the answers to
story problems. For problems in which the correct operation was
multiplication, students usually wrote correct calculations when
both operands were larger than 1 (e.g. “9 x 1.13”) but usually
chose the wrong operation when one operand was smaller than
1 (e.g. choosing “2 - 0.14” instead of “2 x 0.14"). These findings
suggest the possibility that specific number values might also
influence evaluation of existing arithmetic expressions, contrary
to purely syntactic parsing but consistent with opportunistic selec-
tion. This possibility was tested in the present study.

1.2. Development

Given the evidence reviewed above, it is likely that people rely
on multiple mechanisms, including syntactic parsing, perceptual
grouping, and opportunistic selection, to evaluate complex arith-
metic expressions. However, the relative importance of these
mechanisms may change over time and with experience. Here
we describe two possible developmental trajectories: a formal
shift, in which reliance on syntactic parsing increases over devel-
opment while reliance on perceptual grouping and opportunistic
selection decreases, and a non-formal shift, in which reliance on
the latter two mechanisms increases over development.

The formal shift view springs from the intuition that mature
competence in arithmetic consists in mastery of the formal rules.
In this case, older children with more experience in arithmetic
should rely primarily on syntactic parsing, which consists in
explicitly following these rules. Younger children might rely more
on perceptual grouping, given that this mechanism does not
require any knowledge of syntactic rules in order to operate. Sim-
ilarly, younger children might engage in more opportunistic pro-
cessing because they are not yet aware of, or skilled in using, the

1 In Anderson’s (2005, 2009) model, processing is partially dependent on identities
of number symbols, because special production rules apply to expressions involving
multiplication by 1 or addition of 0. However, these differences come into play only
after expressions are parsed according to their syntactic structure.

rules which constrain order of evaluation. The development of
arithmetic competence would then involve a shift from greater
reliance on perceptual grouping and opportunistic selection to
greater reliance on syntactic parsing.

The reader will recognize this view as a specific version of the
shift towards abstraction that has been proposed in many other
domains (Chi et al., 1981; Chi & VanLehn, 2012; Gentner & Toupin,
1986; Gentner, 1988, 2003; Keil & Batterman, 1984; Keil, 1989;
Piaget, 1952; Rattermann & Gentner, 1998; Vygotsky, 1962). Indeed,
several researchers have proposed such a shift in the development of
mathematical cognition in particular (De Lima & Tall, 2008; Novick,
1988; Tall, 1995, 2008). In this shift, mechanisms such as perceptual
grouping and opportunistic selection serve as scaffolding that facil-
itates initial acquisition of procedural competence. This develop-
ment paves the way for subsequent acquisition of formal
knowledge via reification of procedural knowledge, which subse-
quently replaces the initial scaffolding (De Lima & Tall, 2008;
Kirshner & Awtry, 2004; Sfard, 1991; Tall, 1995, 2008).

The non-formal shift view results from the intuition that
mature competence consists not only in behaving in accordance
with the formal rules, but also in doing so quickly and effortlessly.
Explicit awareness of the rules of syntax during the course of
problem-solving might actually interfere with fluency. On the
other hand, perceptual grouping could promote fluency by
enabling fast, effortless apprehension of the internal structure of
arithmetic expressions. Consistent with this view, Goldstone and
colleagues have argued that perceptual processes are fundamental
to effective symbolic reasoning in mathematics and science
(Goldstone, Landy, & Son, 2008; see also Goldstone et al., 2010;
Kellman, Massey, & Son, 2010; Kellman & Massey, 2013; Landy
et al., 2014). Similarly, opportunistic selection could promote flu-
ency by enabling selection of efficient solution paths. Consistent
with this view, procedural flexibility — the ability to solve problems
using various methods rather than rigidly following a standard
algorithm in all cases - is considered to be a hallmark of advanced
mathematical skill (Rittle-Johnson & Star, 2009; Star, 2005). If this
view is correct, then perceptual grouping and opportunistic selec-
tion are not merely scaffolds to be used on the path to competence
and then cast aside, but are instead intrinsic to mature compe-
tence, and reliance on these mechanisms might actually increase
with time and experience.

The non-formal shift view resembles shifts towards concreteness
that have been proposed in other domains (Simons & Keil, 1995;
Varma & Schwartz, 2011). For example, Varma and Schwartz
(2011) argued that when comparing integer magnitudes, younger
children rely on rules (e.g. positive numbers are larger than negative
numbers), while older children rely in part on perceptual compar-
isons on a mental number line. In the present context, increasing
reliance on perceptual grouping and opportunistic selection may
be viewed as a shift towards concreteness because these mecha-
nisms are influenced by relatively concrete information. Specifically,
perceptual grouping relies on perceptual features such as symbol
spacing, while syntactic structure, on which syntactic parsing relies,
is an abstraction over perceptual features. Similarly, opportunistic
selection relies on specific number values, while syntactic structure
is an abstraction over specific number values. A common thread in
these proposals is that reliance on perceptually or semantically con-
crete information increases with development.

In summary, changes with age and experience in the degree to
which spacing between symbols and specific number values influ-
ence the evaluation of complex arithmetic expressions are diag-
nostic regarding the two conflicting views just described. The
non-formal shift view predicts an increase in the influence of these
formally irrelevant factors, while the formal shift view predicts the
opposite. The main goal of the present study was to test these
predictions.
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1.3. Math garden

The study was conducted through a commercial website dedi-
cated to mathematics education, Math Garden? (http://www.math-
sgarden.com; Klinkenberg, Straatemeier, & van der Maas, 2011).
Math Garden offers its users a platform for computerized adaptive
practice (CAP) in mathematics. Math Garden has also been used
extensively as a platform for psychological research (Jansen &
Louwerse, 2013; Jansen et al., 2014; Jansen, de Lange, & van der
Molen, 2013; Van der Ven, van der Maas, Straatemeier, & Jansen,
2013). In the latter capacity, Math Garden offered important advan-
tages for the present study. First, its large and varied user base
enabled us to achieve greater external validity than typically possi-
ble through collaboration with individual schools. Rather than being
limited to a small sample of schools that agreed to participate, the
sample was drawn from approximately 1000 participating schools,
representing over 10% of all primary schools in the Netherlands. Sec-
ond, Math Garden users practice on the website as assigned home-
work or practice for their regular mathematics classes, rather than
to satisfy the demands of an experimenter in a laboratory. This real-
istic setting afforded greater ecological validity than possible in
many laboratory experiments. In particular, we can have confidence
that our results are not caused by idiosyncratic aspects of a labora-
tory environment.

A third advantage of Math Garden relates to its method of
selecting practice problems for its users. Math Garden calculates
and constantly updates ratings of the ability of its users and the
difficulty of each individual problem in its bank, and uses these rat-
ings as a basis for presenting each user with problems that are nei-
ther too easy nor too challenging. The algorithm by which this is
accomplished is outlined here, and described in more detail in
Appendix A and by Klinkenberg et al. (2011) and Maris and van
der Maas (2012). Roughly, when a user answers a problem cor-
rectly, Math Garden increases the user’s ability rating and
decreases the problem’s difficulty rating, while the opposite occurs
when a problem is answered incorrectly. This algorithm is based
on the Elo system for rating chess players’ skills (Elo, 1978), with
the user filling the role of one player, the problem playing the role
of the other player, and correct (incorrect) solution corresponding
to victory by the player (problem). Ratings shift more when the
“winner” (user or problem) was rated much lower than the loser,
and less when the winner was rated higher than the loser. The
algorithm makes use of response time as well as accuracy informa-
tion, so that problems solved accurately but slowly are rated as
more difficult than problems solved accurately and quickly. The
user ability and problem difficulty ratings are used to estimate
the probability with which a given user would answer each prob-
lem correctly. When it is time for a user to receive a new problem,
Math Garden selects a problem for which the user is estimated to
have approximately a 75% chance of answering correctly. This
approach avoids presenting users with problems that are too easy,
which could cause boredom, or with problems that are too hard,
which could cause discouragement and reduce motivation.

The advantage of the above algorithm for the present study is
that the algorithm enables accurate assessment of problem diffi-
culty in a realistic, motivating study environment. The central
research questions of the study were addressed in part by analyz-
ing the relative difficulties of different types of problems, as
explained in the Method section. In a typical experiment, these rel-
ative difficulties might be assessed by having each participant
solve all of the problems, or a subset of those problems selected
either randomly or according to experimental condition. These

2 The third author is founder and member of the board of the company Oefenweb.
nl that owns and manages Math Garden.

approaches would have the drawback that many users could
become bored or discouraged due to receiving problems that were
either too easy or too hard for them. Instead, the problems were
inserted into Math Garden’s problem bank, and were encountered
by users in the course of their regular use of the site. The Math Gar-
den algorithm ensured that users would not receive problems that
were too easy or too hard, thus promoting a relatively high level of
engagement and motivation, as well as ensuring that users’
answers would be highly informative as to their specific profi-
ciency. At the same time, even though different users received dif-
ferent sets of problems that were not randomly selected, the
relative difficulties of the problems can still be accurately assessed
through analysis of the difficulty ratings generated by the
algorithm.

2. Method

To investigate the mechanisms underlying evaluation of com-
plex arithmetic expressions, problems were designed that could
be evaluated in exactly two possible orders - one correct and
one incorrect. Evaluation in the incorrect order always yielded an
incorrect response, referred to as a “foil error.” For example, with
respect to the expression “2 +7 x 5,” incorrectly adding 2 and 7
first to obtain 9, then multiplying 9 by 5, would yield the foil error
45. While holding syntactic structure constant, spacing between
symbols and specific number values were manipulated in such a
way that perceptual grouping and opportunistic selection, respec-
tively, would either encourage or discourage correct order of eval-
uation. These manipulations were expected to affect the difficulty
of correct evaluation and the frequency of foil errors. Further, if the
formal shift view is correct, the effects of these manipulations
should decrease with participants’ age, while if the non-formal
shift view is correct, they should increase with age.

2.1. Participants

Data were collected from 65,856 unique Math Garden users
over a period of 23 months. Our analyses focus on data from users
in Grades 4-8, equivalent to Grades 2-6 (approximately aged 8-
12) in the USA. This range was chosen because students in these
grade levels in the Netherlands have been exposed to all four basic
arithmetic operations (+, -, x, <), but not yet to algebra, in school.
Users in these grade levels accounted for 58,660 (89.1%) of the
65,856 users in the total sample. Individual users contributed vari-
able numbers of responses, ranging from 1 to 1902 (mean: 23.2,
standard deviation: 36.8, median: 13). The total number of
responses contributed by all users was 1,526,089, of which
1,357,092 (88.9%) came from users in Grades 4-8.> The number
of responses contributed by users in each combination of sex and
grade level are shown in Table 1.

As described below, the experiment involved 308 different
arithmetic problems as stimuli, and our analysis of the data
focused on items analyses rather than subject analyses. The num-
ber of responses received for individual problems ranged from 900
to 11,996 (mean: 4954.8, standard deviation: 3196.2, median:
3795). The number of responses received for each item from users
in a single grade level ranged from 24 to 2824 (mean: 881.2, stan-
dard deviation: 656.7, median: 770.5).

3 In both the statistics reported here and the analyses of grade level reported
subsequently, responses were classified by grade level according to the grade level of
the user submitting the response at the time of submission. Thus, it was possible for a
single user to provide data for multiple grade levels over the course of the study.
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;Tlll)'::):rs of responses received from users in each combination of sex and grade level.
Sex Dutch grade level (USA grade level) Total
4(2) 5(3) 6 (4) 7 (5) 8 (6)
Male 114,287 160,737 177,098 171,403 135,618 759,143
Female 41,354 106,652 155,224 166,107 128,612 597,949
Total 155,641 267,389 332,322 337,510 264,230 1,357,092

2.2. Materials

198 arithmetic problems were constructed, divided among 4
problem families with between 24 and 60 problems each. These
problems were inserted into Math Garden together with 1804
other arithmetic problems relating to another study not reported
here. Examples of the problems relating to the present study are
shown in Table 2. All of these problems were three-term arithmetic
expressions, i.e. expressions involving three operands and two
operators. No parentheses or brackets were used, so the correct
order of execution of the two operations had to be determined
based on the rules of arithmetic. For problems in Families 1 and
3, the relevant rule for determining correct order of evaluation
was operator precedence: x must be executed before + and -.
Problems in Families 2 and 4 involved two identical operators,
either - or +. For these problems, the relevant rule for determining
correct order of evaluation was left-to-right evaluation — the oper-
ator on the left must be executed first. The problems were
designed so that executing operations in the incorrect order would
always yield an incorrect response, termed a “foil error.” Problems
were selected so that correct responses and foil errors were always
positive integers. Correct responses were selected so that correct
responses and foil errors were always positive integers. Correct
responses and foil errors for the examples in Table 2 are shown
in the last two columns of the table.

The problems in each family were designed to investigate the
effects of a particular property of arithmetic expressions on the dif-
ficulty of correct evaluation and likelihood of foil errors. These
properties are listed in the column labeled “Property” in Table 2.
Families 1 and 2 involved manipulations of spacing between sym-
bols intended to detect usage of perceptual grouping mechanisms.
Families 3-4 involved manipulations of ease of calculation of
subexpressions via the specific number values involved, and were
intended to detect opportunistic selection. The particular experi-
mental manipulations employed were different for each family,
and are shown in the column labeled “Factor 1” in the table. In
each family, another property of secondary interest was also
manipulated between problems; these properties are listed in the
column labeled “Factor 2.” The problems in each family were
designed according to the factorial combinations of Factor 1 and
Factor 2. Table 2 shows one example problem for each combination
of factor levels within each family.

The problems in Family 1 each involved one addition and one
multiplication, and foil errors were violations of operator prece-
dence, in which addition was executed before multiplication (e.g.
“2+7 x5 =45" by evaluating 2+7 first). Problems were constructed
in sets of four, with all problems in a set sharing the same set of
operands, the same correct response, and the same foil error. These
four problems represented the factorial combinations of two fac-
tors: spacing and operator order. Spacing determined whether
the operands would be narrowly spaced surrounding plus and nor-
mally spaced surrounding times (e.g. “2+7 x5"), or vice versa (e.g.
“2 +7x5"), while operator order determined whether plus was the
first (e.g. “2+7 x5”) or the second operator (e.g. “5 x 7+2"). Narrow
spacing around plus, rather than times, was expected to increase

difficulty and likelihood of foil errors. 15 sets of four problems each
were generated, for a total of 60 problems in the family.

Problems in Family 2 each involved two subtractions or two
divisions, and foil errors were violations of left-to-right order of
execution, in which the second operation was executed before
the first (e.g. “23 - 13-8 = 18” by evaluating 13-38 first). Problems
were constructed in sets of two, with all problems in a set sharing
the same operations (subtractions or divisions), the same set of
operands, the same correct response, and the same foil error. The
two problems differed with respect to spacing, i.e. in one problem,
the first operator was surrounded by narrow and the second by
normal spacing (e.g. “23-13 - 8”), and vice versa for the other
problem (e.g. “23 - 13-8"). Narrow spacing around the second
operator was expected to increase difficulty and the likelihood of
foil errors. 15 sets of two problems each were generated for each
of the two operations, subtraction and division, for a total of 60
problems.

Problems in Families 3 and 4 were designed to investigate
whether expressions that were simple to calculate by virtue of
the numbers involved would be prioritized for evaluation. In Fam-
ily 3, the first operation was always subtraction and the second
multiplication, and foil errors were violations of operator prece-
dence, in which subtraction was executed before multiplication
(e.g. “33 - 13 x 2 =40" by evaluating 33 - 13 first). Problems were
constructed in sets of two, with the subtraction operation simple to
calculate in one problem and neutral to calculate in the other. In
the simple case, the first and second operands shared a units digit,
so that the units digit of their difference was evidently zero (e.g.
“33 - 13 x 2”), while in the neutral case, the first and second oper-
ands did not share a units digit (e.g. “30 - 13 x 2”). Difficulty and
foil error rates were expected to be greater when the subtraction
was simple than when it was neutral. The problems in one set
shared the same second and third operands, and differed only with
respect to the first operand. Problem sets differed from each other
with respect to the size of the difference between the first two
operands, which could be either approximately 20 (e.g. “33 -
13 x 2”) or approximately 100 (e.g. “115 - 15 x 3”). The differ-
ences were exactly 20 or 100 for the simple subtraction problems,
and near to 20 or 100 for the neutral subtraction problems. Four
sets of two problems each were created for differences of approx-
imately 20, and 8 sets of two for differences of approximately 100,
for a total of 24 problems.

Problems in Family 4 involved two subtractions or two divi-
sions, and foil errors were violations of left-to-right order of execu-
tion, in which the second operation was executed before the first
(e.g. “25 - 13 - 3=15" by calculating 13 - 3 first). Problems were
constructed in sets of two, differing according to whether the first
operation or the second operation was simple to calculate, if exe-
cuted first. For problems involving subtraction, simplicity of calcu-
lation was manipulated as in Family 3, i.e. to make the first
subtraction easy, the first and second operands would share a units
digit (e.g. “32 - 12 - 6”), while to make the second subtraction
easy, the second and third operands would share a units digit
(e.g. “25 - 13 - 3”). For problems involving division, simplicity of
calculation was manipulated by making either the quotient of
the first and second operands equal to 10 (simple first operation,
e.g. “120 +~ 12 = 2”) or the quotient of the second and third oper-
ands equal to 10 (simple second operation, e.g. “2000 =+ 50 + 5”).
Within each set, the three operands in one problem had similar
though not necessarily identical values to those in the other prob-
lem. Difficulty and foil error rates were expected to be greater
when the second, rather than the first, operation was simple to cal-
culate. 15 sets of subtraction problems and 12 sets of division
problems were created, for a total of 54 problems.
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Table 2
Problem families, with examples.”

Family Relevant rule Property Factor 1 Factor 2 Example Correct response  Foil error

Family 1  Operator precedence Spacing between symbols Narrowly spaced plus Plus first 2+7 x5 37 45
Narrowly spaced times Plus first 2+7x5 37 45
Narrowly spaced plus Plus second 5 x 7+2 37 45
Narrowly spaced times Plus second 5x7+2 37 45

Family 2  Left-to-right evaluation Spacing between symbols Narrowly spaced 1st operator  Subtraction 23-13 -8 2 18
Narrowly spaced 2nd operator  Subtraction 23 -13-8 2 18
Narrowly spaced 1st operator ~ Division 64+8 -4 2 32
Narrowly spaced 2nd operator  Division 64 = 8+4 2 32

Family 3  Operator precedence Ease of calculation Simple subtraction Difference ~ 20 33-13x2 7 40
Neutral subtraction Difference ~ 20 30-13 x2 4 34
Simple subtraction Difference ~ 100 115-15x3 70 300
Neutral subtraction Difference ~ 100 112 -15x3 67 291

Family 4 Left-to-right evaluation Ease of calculation Simple 1st operation Subtraction 32-12-6 14 26
Simple 2nd operation Subtraction 25-13-3 9 15
Simple 1st operation Division 120+12+2 5 20
Simple 2nd operation Division 2000 + 50 +5 8 200

2 Following Dutch notational conventions, division was represented by a colon (“:”) rather than by the obelus (“+") for all problems in the experiment. In the examples
presented in this table and in the text of this article, the obelus is employed on the assumption that it is more familiar to most readers.

2.3. Procedure

Rather than recruiting participants specifically for this study,
data were collected from Math Garden users in the course of their
regular use of the Math Garden website. Users accessed the Math
Garden system via web browsers from any location and at any
time. Upon logging in, they could select any of a number of differ-
ent “games” to play, each involving practice with a different type of
mathematics problem. The problems relating to the present study
were contained within a game called “Arithmetic Sequence.” Only
users who had previously demonstrated competence with basic
arithmetic operations could access this game, while such users
could access it as often as they wished. Each time a user accessed
this game, they were presented with a sequence of problems for
which the estimated probability of a correct response was near
75%, given the system’s current ratings of the user’s skill level
and the difficulties of all problems in the system. These ratings
were calculated using the Math Garden algorithm, as described
in Appendix A.

The problems were presented one at a time. Fig. 1 illustrates the
user interface for a single problem. Each problem appeared in a box
at the top of the screen. Below the problem was a section for user
input. Users employed a virtual keypad to enter a response, which
would appear in the blue area, then clicked on “OK” to submit the
response. If the response was correct, the answer box turned green
and the next problem appeared automatically after 2s. If the
response was incorrect, the answer box turned red, the correct
answer was displayed, and the next problem appeared after 10 s
or after the user clicked a “continue” button, whichever came first.

Users were encouraged to respond both quickly and accurately
by Math Garden’s scoring system. (As described in the Appendix A,
both accuracy and response time are taken into account by Math
Garden'’s algorithm.) A row of coins was displayed at the bottom
of the problem interface (Fig. 1). Users earned coins by solving
problems quickly and accurately, and could later exchange these
coins for virtual rewards. 20 coins appeared initially for each
new problem, and the coins disappeared at a rate of one per second
until a response was submitted. When a user submitted a response,
they earned the number of coins currently displayed if the
response was correct, and lost that number if the response was
incorrect. If no response was submitted before all of the coins dis-
appeared (i.e. after 20 s), the correct answer was automatically dis-
played and the user neither earned nor lost coins. This reward
system was shared among all games in Math Garden and was
therefore familiar to users.

Problems were presented in blocks of 15. However, users were
free to quit at any time, including in the middle of a block. Users
could also do as many blocks as they wished, and after stopping,
could later return to the game as often as they wished. Thus, the
number of problems completed, and the selection and sequence
of these problems, was variable from user to user.

2.4. Measures

Items analyses were conducted to test the predictions described
in the Materials. The reason for analyzing the data by items rather
than by participants was that each participant solved a different,
non-random subset of the entire set of problems. We expected
our manipulations of problem features in each family to affect
the difficulty of correct evaluation and likelihood of foil errors. To
test these predictions, we calculated two measures for each prob-
lem: difficulty rating and foil error rate.

Difficulty ratings were calculated using the algorithm described
in Appendix A. In brief, when a given student completed a given
problem, the percent of coins gained or lost was used as a measure
of performance. This measure takes both accuracy and response
time into account, because fewer coins could be gained (or lost)
following slower responses. Performance was predicted based on
a formal model with two key parameters: problem difficulty rating
and student ability level, and after each problem solving attempt,
both of these parameters were updated based on actual perfor-
mance. The difficulty ratings used for analysis were the most
recently-updated values at the end of data collection, and therefore
constitute aggregate measures of difficulty across all students who
attempted each problem. The algorithm by which the ratings were
updated is described in detail in Appendix A, while evidence for
reliability of the final difficulty ratings is given in Appendix B.

Foil error rate was defined as number of foil errors divided by
total number of responses for each problem. Foil error rates were
calculated using only data from participants in the grade levels
of interest, i.e. Dutch grades 4-8. Note that the calculation of diffi-
culty ratings could not be constrained in the same way, because
these ratings represented the sum total of all adjustments made
by the algorithm throughout data collection. Similarly, foil error
rates could be calculated separately for each grade level, while
such calculations were not possible for difficulty ratings. Thus,
analyses of effects of grade level were only performed with respect
to foil error rates, not difficulty ratings.

Two secondary measures were also calculated for each prob-
lem: error rate (number of incorrect responses divided by number
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Fig. 1. Screenshot illustrating the user interface for a single problem in Math Garden.

of responses) and proportion of foil errors (number of foil errors
divided by number of incorrect responses). Difficulty rating was
preferred to error rate as a measure of problem difficulty because
the algorithm used to select problems would tend to diminish dif-
ferences in error rates by preferentially assigning easier problems
to less skilled users and more difficult problems to more skilled
users. Foil error rate was preferred to proportion of foil errors as
a measure of the likelihood of foil errors because our predictions
pertained to absolute frequency of foil error responses. Analyses
of error rate and proportion of foil errors typically yielded results
consistent with those reported for difficulty rating and foil error
rate, respectively. Exceptions are noted in the Results.

2.5. Analyses

Each family involved manipulation of a formally extraneous
problem feature, termed factor 1 (Table 2), which was predicted
to affect problem difficulty and likelihood of foil error responses.
We tested these predictions by submitting difficulty ratings and
foil error rates of the problems in the family to a one-way ANOVA
with factor 1 as a repeated-measures factor. When this analysis
yielded a significant result, we tested whether the effect on foil
error rates changed with participants’ age/experience by adding
grade level as a repeated-measure numeric predictor to the analy-
sis of foil error rates. Finally, when a significant interaction
between factor 1 and grade level was found, linear regression
was used to assess the magnitude of the interaction by regressing
the difference in mean values between different levels of factor 1
against grade level. The secondary problem features, termed factor
2 (Table 2), did not pertain to our main research questions and thus
are not included in the analyses reported below. Analyses includ-
ing factor 2 in each family are reported in Supplementary Materi-
als. In general, including factor 2 did not affect the main analysis
findings. Exceptions are noted in the Results.

3. Results
3.1. Summary

The key results of our analyses for all four problem families are
summarized in Table 3. Difficulty ratings and foil error rates were
both significantly higher when narrow spacing was used around
operators that should have been executed second, rather than first.
This result held whether the formally correct order of operations

was determined by rules of operator precedence (Family 1) or
left-to-right evaluation (Family 2). In both cases, the magnitude
of the spacing effect increased significantly with grade, by about
1.9% per grade level. Subtraction and division operations were
more likely to be evaluated prematurely if doing so made them
simpler to evaluate (Families 3-4). When correct order of opera-
tions was determined by operator precedence (Family 3), this
result was reflected in the analysis of foil error rate, but not diffi-
culty rating, while when correct order was determined by left-to-
right evaluation (Family 4), the result was evident in the analyses
of both foil error rates and difficulty ratings. In the latter case only,
the magnitude of the effect of simplicity of calculation increased
with grade, by about 1.2% per grade level. The detailed analyses
of each problem family are presented below.

3.2. Family 1 (spacing between symbols - operator precedence)

For problems in Family 1 (e.g. “5 x 7+2"), narrow spacing
around the plus sign was expected to increase difficulty and fre-
quency of foil errors, in which addition is executed before multipli-
cation. Repeated-measures ANOVA revealed significant effects of
spacing on both difficulty ratings, F(1,14)=36.03, p<.001,
r]é =.251, and foil error rates, F(1,14)=74.87, p<.001,
11§ = .511.% As shown in Fig. 2, higher difficulty ratings and higher
foil error rates resulted when narrow spacing surrounded the plus
sign rather than the times sign. Thus, spacing between symbols
had the predicted effect.

To test for a developmental trend in the magnitude of this
effect, grade level was added to the analysis of foil error rate as a
numeric repeated measure. The main effect of grade level was sig-
nificant, F(1,14)=77.77, p<.001, nZ = .545, indicating that foil
error rates increased from the earlier to the later grades (e.g. Grade
4: 9.1%, Grade 8: 13.6%). This increase was accompanied by a
decrease in response time (e.g. average response time was 9.26 s
in Grade 4, but 8.13 s in Grade 8). However, the fact that overall
error rates decreased concurrently (e.g. Grade 4: 34.6%, Grade 8:
31.3%) argues against the increase in foil errors resulting simply
from carelessness or a speed-accuracy tradeoff. Similarly, the
decrease in overall error rates makes it unlikely that the increase

4 Problems which belonged to the same set and differed only with respect to the
order of plus and times, such as 2+7x5 and 5x7+2, were treated as a single item for
these and all other items analyses in Family 1. All reported effects remained
significant if such pairs were treated as distinct items instead of as a single item.
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Table 3

Summary of items analyses. Factor 1 indicates the primary factor of interest for each problem family. “Main effect,” main effect of Factor 1 in ANOVA. “Interaction with grade,”
interaction of Factor 1 with grade level in ANOVA. “Regression against grade,” linear regression against grade level of the difference in means at different levels of Factor 1.

Significant p values are marked as *(p <.05), **(p <.01), or **(p <.001).

Family Relevant rule Factor 1 Measure Main effect Interaction with Regression against
grade grade
2 2
p A p ng p B
1 Operator precedence Narrowly spaced plus or times Difficulty <.001** 251 - - - -
Foil rate <.001*** 511 <.001"** 433 <.001** 0.019
2 Left-to-right evaluation Narrowly spaced 1st or 2nd operator Difficulty <.001*** .148 - - - -
Foil rate <.001** 424 <.001** 182 <.001** 0.019
3 Operator precedence Simple or neutral subtraction Difficulty .085 .092 - - - -
Foil rate .002* 272 .562 .003 - -
4 Left-to-right evaluation Simple 1st or 2nd operation Difficulty <.001** 489 - - - -
Foil rate <.001*** 434 <.001™** .047 .013* 0.012
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Fig. 2. (A) Difficulty ratings and (B) foil error rates for Family 1 problems.

in foil errors was caused by comparable problems being assigned
to less able students at higher grade levels.

Critically, the interaction of grade level with spacing was signif-
icant, F(1, 14) =73.62, p <.001, né = .433. As shown in Fig. 3, the
effect of spacing increased with grade level. To assess the rate of
this increase, the mean difference in foil error rates between prob-
lems in which plus or times was narrowly spaced was submitted to
linear regression with grade level as a predictor. The regression
was significant, F(1,73)=58.5, p <.001, =0.019, indicating that
the magnitude of the spacing effect increased by about 1.9% for
each increase of one grade level.

3.3. Family 2 (spacing between symbols - left-to-right evaluation)

For problems in Family 2 (e.g. “23 - 13-8"), narrow spacing
around the second operator was expected to increase problem dif-
ficulty and frequency of foil errors, in which the second operation
is executed before the first. Repeated-measures ANOVA found sig-
nificant effects of spacing on both difficulty ratings, F(1,29)
=37.97, p<.001, 11§ =.148, and foil error rates, F(1, 14)=40.81,

35%
30% —
25% —
20% —

15% -

Foil Error Rate

10% —

p <.001, r]§ = .424. As shown in Fig. 4, higher difficulty ratings
and higher foil error rates resulted when the second rather than
the first operator was narrowly spaced. Again, spacing between
symbols had the predicted effect.

Grade level was next added to the analysis of foil error rate as a
repeated measure. The main effect of grade level was significant, F
(1,29)=95.66, p<.001, 11§ =.173, indicating an increase in foil
error rates from the earlier to the later grades (e.g. Grade 4: 6.5%,
Grade 8: 12.0%). This increase was accompanied by a decrease in
overall error rates (e.g. Grade 4: 45.3%, Grade 8: 36.7%) and no
change in average response times (e.g. Grade 4: 9.08 s, Grade 8:
9.005s).

The critical interaction of grade level with spacing was signifi-
cant, F(1,29)=27.01, p<.001, 17§ = .082. As shown in Fig. 5, the
effect of spacing increased with grade level. (Addition to the anal-
ysis of the factor of secondary interest in this family, i.e. whether
the operation was subtraction or division, revealed a significant
3-way interaction of spacing and grade level with operation,
p <.001. The 2-way interaction of spacing and grade level was pri-
marily driven by division problems and was not present for

-e- Narrowly-spaced plus
—o— Narrowly-spaced times

5% —

0% T T

Participant Grade

Fig. 3. Foil error rates for Family 1 problems, by spacing and Dutch grade level.
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Fig. 5. Foil error rates for Family 2 problems, by spacing and Dutch grade level.
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Fig. 6. (A) Difficulty ratings and (B) foil error rates for Family 3 problems.

subtraction problems. Further detail is provided in Supplementary
Materials.) The mean difference in foil error rates between prob-
lems in which the second or first operator was narrowly spaced
was submitted to linear regression with grade level as a predictor.
The regression was significant, F(1, 148)=13.2, p <.001, 8=0.019.
Thus, the magnitude of the spacing effect increased by about
1.9% for each increase of one grade level.

3.4. Family 3 (ease of calculation — operator precedence)

For problems in Family 3 (e.g. “33 - 13 x 2”), simplicity of calcu-
lation of the subtraction operation was expected to increase prob-
lem difficulty and frequency of foil errors, in which subtraction is
evaluated before multiplication. Repeated-measures ANOVA found
only a marginally significant effect of simplicity of subtraction on
difficulty ratings, F(1,11) =3.57, p=.085, 13 = .092, but a signifi-
cant effect on foil error rates, F(1,11)=16.35, p =.002, n§ = .272.
(When approximate size of difference in the subtraction operation,
either 20 or 100, was included as a factor in the analysis, the effect
of simplicity of subtraction on difficulty ratings became significant,
p=.027.) As shown in Fig. 6B, foil error rates were higher when the
subtraction operation was simple to execute than when it was neu-
tral; difficulty ratings tended to show the same trend, though not as

strongly (Fig. 6A). (Similarly, the effect of simplicity of subtraction
on proportion of foil errors was significant, p <.001, while the effect
on error rates was not significant, p =.757.)

When grade level was added to the analysis of foil error rate, the
main effect of grade level was significant, F(1,11) = 19.28, p =.001,
nﬁ =.118, indicating an increase in foil error rates from the earlier
to the later grades (e.g. Grade 4: 7.7%, Grade 8: 13.4%). In contrast to
Families 1-2, this increase was accompanied by an increase in over-
all error rates (e.g. Grade 4: 33.5%, Grade 8: 37.3%), although this
increase was smaller than the increase in foil error rates, implying
a slight decrease in frequency of non-foil errors. (Response times
also increased with age in this family, e.g. Grade 4: 7.34 s, Grade
8:8.72 s.) However, the interaction of simplicity of subtraction with
grade level did not reach significance, F(1,11)=0.358, p =.562.
Thus, we did not perform a post hoc regression analysis as in other
families to assess the size of the grade effect.

3.5. Family 4 (ease of calculation - left-to-right evaluation)

For problems in Family 4 (e.g. “25 - 13 - 3”), problem difficulty
and frequency of foil errors, in which the second operation is exe-
cuted prematurely, were expected to increase when the second
operation was simple to calculate. Repeated-measures ANOVA
found significant effects of which operation was simple to calculate
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Fig. 8. Foil error rates for Family 4 problems, by ease of calculation and Dutch grade level.

on both difficulty ratings, F(1, 26) = 67.72, p <.001, 17§ =.489, and
foil error rates, F(1,26)=36.51, p<.001, 112 = .435. As shown in
Fig. 7, difficulty ratings and foil error rates were higher when the
second operation was simple to calculate. Thus, simplicity of calcu-
lation had the predicted effect.

Addition of grade level as a repeated measure to the analysis of
foil error rates revealed a significant main effect of grade level, F
(1,26)=97.70, p <.001, né =.106, indicating an increase in foil
error rates from the earlier to the later grades (e.g. Grade 4: 5.4%,
Grade 8: 8.9%), despite a decrease in overall error rates (e.g. Grade
4: 45.1%, Grade 8: 34.7%) and no change in response times (e.g.
Grade 4: 8.93 s, Grade 8: 8.82 s). The critical interaction of grade
level with spacing was significant, F(1,26)=44.88, p<.001,
né = .047. As shown in Fig. 8, the effect of which operation was
simple to calculate increased with grade level. The mean difference
in foil error rates between problems in which the second or first
operation was simple to calculate was submitted to linear regres-
sion with grade level as a predictor. The regression was significant,
F(1,133)=6.33,p =.013, B = 0.012. Thus, the magnitude of the ease
of calculation effect increased by about 1.2% for each increase of
one grade level.

4. Discussion

Below, we briefly discuss the implications of the main effects of
our experimental manipulations regarding the mechanisms under-
lying competence in arithmetic. We then discuss in detail the
interactions of these effects with age, including their implications
regarding the development of arithmetic competence, theories of
mathematical development more generally, and educational prac-
tice in mathematics.

4.1. Mechanisms supporting arithmetic competence

4.1.1. Perceptual grouping
Consistent with the view that evaluation of complex arithmetic
expressions relies in part on perceptual grouping mechanisms to

identify and prioritize sub-expressions for evaluation, narrow
spacing surrounding operand symbols in problem Families 1 and
2 increased the probability that those operands would be evalu-
ated first, even when doing so constituted a violation of the rules
for order of evaluation. This finding echoes those of several previ-
ous studies (Jiang et al., 2014; Kirshner, 1989; Landy & Goldstone,
2007b, 2010). This replication is encouraging, considering several
differences between the present study and previous ones. First,
while previous studies were conducted in the United States and
Canada, the present study employed Dutch participants, suggest-
ing that the effects of spacing do not likely result from idiosyn-
cratic properties of particular educational systems. Second, the
present study was embedded into participants’ regular mathemat-
ics study under conditions of (presumably) relatively high motiva-
tion, suggesting that effects of spacing generalize beyond the
laboratory settings employed in previous studies. Finally, the pre-
sent study employed primary school students, in contrast to the
previous studies mentioned above, all of which employed univer-
sity students. The fact that similar effects were found in all of these
studies despite their methodological differences suggests that
these effects are both robust and general.

4.1.2. Opportunistic selection

In problem Families 3 and 4, sub-expressions were more likely
to be evaluated prematurely, in violation of correct order of oper-
ations, when they were easy to calculate due to the specific num-
ber values involved. Corroborating earlier findings of Linchevski
and Livneh (1999; Herscovics & Linchevski, 1994), this result is
consistent with people prioritizing easy-to-calculate sub-
expressions for evaluation, a mechanism we have dubbed “oppor-
tunistic selection.” More generally, the result suggests that a com-
plete theory of human evaluation of symbolic expressions in
arithmetic and, likely, similar domains should account not only
for syntactic and perceptual constraints, but also for procedural
constraints such as a preference for easier actions over harder ones.
Such procedural constraints are not reflected in several existing
models of arithmetic and algebraic expression processing
(Anderson, 2005, 2009; Jansen et al.,, 2007; Maruyama et al.,
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2012). Accommodating such constraints within such models
would likely require relaxing the assumption that parsing of struc-
ture precedes and influences evaluation, but is not influenced by it.

This conclusion dovetails with several studies (Alibali, Phillips,
& Fischer, 2009; Crooks & Alibali, 2013; McNeil & Alibali, 2004)
suggesting that knowledge of procedures can impact perception
of arithmetic expressions. When asked to reconstruct equivalence
problems, such as “3+4+6=3+__," after brief presentation, students
often place the equals sign to the right of all operators, as in “3+4+6
+3=__" McNeil and Alibali (2004) argued that such errors result
from assimilation into a familiar perceptual pattern - namely,
operands on the left, answer on the right - associated with the
well-practiced procedure of applying all given operations to all
given operands. Consistent with this view, students who learned
to solve the problems by equalizing the two sides of the equations
were subsequently less likely to commit similar reconstruction
errors, presumably because this procedure highlights the possibil-
ity of operations on both sides of the equation (Alibali et al., 2009).
Thus, symbolic expressions are often perceived in a manner consis-
tent with application of known procedures. Extending this conclu-
sion, the present findings suggest that procedural knowledge can
influence not only perception of physical features such as ordinal
position of symbols but also perception of non-physical properties
such as the internal structure of expressions, and that the ease with
which known procedures may be executed is one factor that can
exert such an influence.

A possible alternative explanation for the present findings is
that the supposedly easy-to-evaluate sub-expressions in problem
Families 3 and 4 were prioritized for evaluation due to perceptual
grouping rather than opportunistic selection. The operands in
these sub-expressions always shared one or more digits (e.g.
“120” and “12” in “120 = 12”) and may, therefore, have been per-
ceived as groups due to perceptual similarity of their operands,
consistent with the Gestalt principle of similarity (Wertheimer,
1938). However, if perceptual similarity alone were responsible
for the observed effects, one might expect these effects to be even
stronger in expressions containing sub-expressions with identical
rather than merely similar operands. In fact, the opposite result
was found in two problem families not reported in the current
study. The results from these families did reveal a tendency to pri-
oritize evaluation of sub-expressions with identical operands (e.g.
“4+4” in the expression “7 x 4 +4”), but this effect appeared in
only one of the two problem families and was much smaller than
those observed in Families 3 and 4. Thus, perceptual grouping is
unlikely to account completely for the results obtained from Fam-
ilies 3 and 4.

4.2. Development of arithmetic competence

The principal contribution of the present study is the finding
that the effects of both symbol spacing and ease of calculation on
order of evaluation increased with grade level. The fact that prior-
itization of closely-spaced sub-expressions increased with grade
level suggests that reliance on perceptual grouping increases with
age and arithmetic experience. Similarly, the developmental trend
in prioritization of easy-to-evaluate sub-expressions suggests that
opportunistic selection also increases with age and experience.
Together, these results imply that the development of the ability
to evaluate complex arithmetic expressions in the correct order
cannot be fully characterized in terms of increasingly consistent
and correct use of syntactic parsing, and, in fact, experience often
leads to less strict adherence to the formal properties of
mathematics.

Several aspects of the data permit elimination of alternative
explanations of our results. First, because participants were not
randomly assigned to problems within each grade level, it is

possible that the participants assigned to a given problem at later
grade levels tended to be less competent than those assigned to the
same problem at earlier grade levels. If so, effects of increasing
grade level might actually be effects of decreasing competence.
However, in this case, not only foil error rates but also overall error
rates should increase with grade level. In fact, the opposite
occurred in the three problem families (1, 2, and 4) which showed
significant interactions involving grade level. A second possibility
is that the higher foil error rates reflect age-related increases in
procedural flexibility rather than increased reliance on perceptual
grouping and opportunistic selection (Rittle-Johnson & Star, 2009;
Star, 2005). While procedural flexibility is typically associated with
skill in mathematics, increases in flexibility could have the side
effect of increasing foil error rates because foil errors result specif-
ically from evaluating expressions in orders other than the stan-
dard order. However, while this possibility could explain why foil
error rates increased with grade level concurrent with decreases
in overall error rates, it cannot explain why the effects of symbol
spacing and ease of calculation on foil error rates should also
increase with grade level.

Why should reliance on perceptual grouping and opportunistic
selection increase with age and experience? We suspect the reason
to be that these mechanisms reduce the time and effort required to
encode and manipulate symbolic expressions. Fluency - the ability
to perceive and act quickly and with minimal effort - is considered
essential to expertise in general (Chase & Simon, 1973; Koedinger,
Corbett, & Perfetti, 2012) because fluency enables experts to deal
with complex situations by reducing the mental resources
expended on processing details. Further, perceptual mechanisms
can support the development of fluency and expertise in mathe-
matics in particular (Goldstone et al., 2008, 2010; Kellman &
Massey, 2013; Koedinger & Anderson, 1990). It is plausible that
opportunistic selection also contributes to fluency, and thus to
expertise, because opportunistic selection by definition involves
choosing solution paths that reduce subsequent effort.

Expertise certainly does not depend on fluency alone. Fluently-
performed procedures may still be incorrect, as indeed illustrated
by the present study. Further, a sense of fluency can inhibit analyt-
ical reasoning (Alter, Oppenheimer, Epley, & Eyre, 2007; Diemand-
Yauman, Oppenheimer, & Vaughan, 2010; Oppenheimer, 2008)
and cause overestimation of one’s own understanding (Bjork,
Dunlosky, & Kornell, 2013). Nevertheless, the present results sug-
gest that increasing reliance on mechanisms that contribute to flu-
ent performance may occur naturally in the development of
mathematical competence. The implications of this conclusion
for educational practice are considered in the next section.

While a tendency to adopt mechanisms that support greater
fluency is one possible explanation for age-related increases in
effects of symbol spacing and number values on order of evalua-
tion, these increases could result from statistical learning processes
unrelated to fluency per se. More specifically, in written arithmetic,
adults tend to use narrower spacing around higher-precedence
operator symbols (Landy & Goldstone, 2007a). Thus, even though
symbol spacing is irrelevant to operator precedence, narrow spac-
ing may be statistically associated with higher operator prece-
dence in written arithmetic. Students may pick up on this
association and thus tend to prioritize narrowly-spaced sub-
expressions (e.g. Landy et al., 2008). Similarly, ease of calculation
may be a valid cue for determining correct order of evaluation in
students’ experience, even though there is no formal reason this
should be true. That is, expressions in which it is correct to evalu-
ate the more easily-calculated sub-expression first, such as “25 -
15 - 3,” may simply be more common than those in which it is
incorrect to do so, such as “25 - 13 - 3.” The present findings do
not allow us to eliminate these possibilities (though, see Landy &
Goldstone, 2010 for an argument that effects of symbol spacing
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in algebra cannot be attributed entirely to learned statistical asso-
ciations). However, even if increasing effects of formally irrelevant
factors (i.e. symbol spacing and number values) on order of evalu-
ation are a consequence of statistical learning rather than a drive
towards fluency, the conclusion still stands that such a develop-
ment is not adequately characterized in terms of increasing reli-
ance on formal syntactic structure.

The developmental trends identified in the present study may
not continue indefinitely. Children’s performance might become
increasingly aligned with formal rules at grade levels higher than
those included in the study, leading to a decrease in the observed
effects of symbol spacing and number values at that time.
McNeil (2007) observed just such a non-monotonic trend in the
development of children’s understanding of mathematical equiva-
lence over the ages 7-11. Accuracy in solving equivalence prob-
lems decreased between ages 7 and 9, presumably due to
reinforcement through practice of a procedural understanding of
the equals sign, but then increased between ages 9 and 11 as chil-
dren gained a relational understanding of the equals sign.

With respect to the present findings it is important to note that
a decrease, at higher grade levels, in the size of the effects observed
would not necessarily reflect an increase in reliance on syntactic
parsing. Instead, such a decrease might result from adjustment of
mechanisms such as perceptual grouping and opportunistic selec-
tion to bring them into closer alignment with formal syntax
(Goldstone et al., 2011, 2010). For example, experience with arith-
metic and algebra might differentially increase the salience of
higher-precedence operators, allowing attentional mechanisms
more effectively to implement operator precedence rules (Landy
et al., 2008; Landy, 2007). On the other hand, while the effects of
spacing observed in Families 1 and 2 may decrease at higher grade
levels, they are still present even among university students (Jiang
et al.,, 2014; Kirshner, 1989; Landy & Goldstone, 2007b, 2010).
Thus, alignment of perceptual grouping mechanisms with formal
syntactic rules may not occur completely or for all learners, even
after considerable formal instruction in mathematics. Future
research should test whether the same point holds in the case of
opportunistic selection, by attempting to replicate the present
findings regarding effects of specific number values among more
mathematically sophisticated individuals, such as undergraduate
or graduate students in STEM (Science, Technology, Engineering,
and Mathematics) departments.

4.3. Implications regarding mathematical development

In general, the present findings challenge the view that a shift
towards abstraction (Chi et al., 1981; Chi & VanLehn, 2012;
Gentner & Toupin, 1986; Gentner, 1988, 2003; Keil & Batterman,
1984; Keil, 1989; Piaget, 1952; Rattermann & Gentner, 1998;
Vygotsky, 1962) can fully account for the development of mathe-
matical cognition. In mathematics, the idea of a shift towards
abstraction appears in the guise of a shift towards formal thinking,
characterized by reliance on formal rules and axioms. Such a shift
implies that formally irrelevant factors, such as those manipulated
in the present study, should exert a decreasing influence on perfor-
mance over time. As an example, Briars and Siegler (1984) found
that very young children’s conception of counting was heavily
dependent on formally extraneous features of counting proce-
dures, such as whether items were counted in standard left-to-
right order. Older children were better able to distinguish defini-
tional features of correct counting - that is, one-to-one correspon-
dence between count words and counted objects — from formally
extraneous features.

Tall’s (1995, 2008; De Lima & Tall, 2008) “three worlds” frame-
work describes a similar shift in broader mathematical cognitive
development from childhood to adulthood. In this framework,

mathematical thought belongs to embodied, symbolic, or formal
worlds, or to blends among these. Development begins with the
embodied and symbolic world, while the formal world later
becomes primary, a change referred to as a “transition to formal
thinking.” Competence in symbolic manipulations is a necessary
prerequisite for this transition and remains important after it,
because formal thinking continues to rely on symbolic representa-
tions. The framework therefore acknowledges that such compe-
tence plays a foundational and persistent role in mathematical
cognitive development. However, as we have argued, symbolic
competence could result from a variety of different cognitive
mechanisms, such as syntactic parsing, perceptual grouping, and
opportunistic selection in the case of arithmetic evaluation. A pro-
gression towards formal thinking suggests increasing reliance on
the mechanisms most compatible with such thinking, such as syn-
tactic parsing, and decreasing reliance on mechanisms that empha-
size formally extraneous factors, such as perceptual grouping and
opportunistic selection. It certainly does not predict increasing reli-
ance on the latter mechanisms even in cases when they conflict
with formal rules. Yet, just such an increase was observed in the
present study. While this finding is not actually contradictory with
an eventual progression towards formal thinking, it does suggest
that such a progression is not the whole story.

Do the present findings reflect developmental trends idiosyn-
cratic to arithmetic, or do similar changes also appear in other
mathematical domains? In fact, similar trends have been observed
in research on the numeric cognitive development. Representation
of numerical magnitudes is believed to rely on a visuo-spatial
mechanism sometimes called a “mental number line” (Fischer &
Shaki, 2014; McCrink & Opfer, 2014). One source of evidence is
the Spatial-Numerical Association of Response Codes (SNARC)
effect (Dehaene, Bossini, & Giraux, 1993), in which manual
responses associated with small numbers are given more easily
with the left than the right hand, while the reverse is true for large
numbers, consistent with mapping of numeric magnitudes onto a
(left-right) spatial axis. The automaticity and magnitude of the
SNARC effect appears to increase with age (Van Galen & Reitsma,
2008; Wood, Willmes, Nuerk, & Fischer, 2008), suggesting that
the visuo-spatial properties of the mental number line exert an
increasing influence over development. Another source of evidence
is distance effects, in which the speed or accuracy of comparison
between numbers depends on the numeric distance between them
(Moyer & Landauer, 1967), consistent with effects of distance on
discriminability of locations in a spatial continuum. A recent study
found distance effects in the comparison of positive and negative
integers among adults, but not among 6th grade children (Varma
& Schwartz, 2011). Varma and Schwartz (2011) concluded that
children rely on a rule (i.e. any positive integer is greater than
any negative one) for such comparisons, while adults rely addition-
ally on visuo-spatial representations of positive and negative inte-
gers. In sum, findings on numeric cognition parallel the present
results in suggesting that reliance on perceptual mechanisms
may increase over the course of mathematical cognitive
development.

4.4. Implications regarding mathematics education

From the perspective of educational practice in mathematics,
two quite different attitudes are possible towards the observation
that some formally extraneous factors exert an increasing influ-
ence on performance over time. On the one hand, one might view
these trends as undesirable and potentially mutable, or at least
remediable, through education. That is, even if mathematics stu-
dents’ perceptions of symbolic expressions are influenced by for-
mally extraneous factors, they should not be so, and it is the job
of educators to foster greater attention to, and understanding of,
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formal properties such as syntactic structure. Kirshner and Awtry
(2004) described a curricular approach consistent with this philos-
ophy, termed “Lexical Support Systems” (LSS). LSS emphasizes the
deliberate and systematic use of terminology designating struc-
tural components such as terms and factors, with the intention of
providing “an explicit declarative account of the conventions for
parsing algebraic expressions.” While Kirshner and Awtry’s
(2004) proposal is distinctive in its emphasis on formal syntactic
structure as an alternative to “mindless matching of visual pat-
terns,” many other researchers have associated automatic percep-
tual and procedural mechanisms with lack of conceptual
understanding in mathematics (Kamii & Dominick, 1998; McNeil
& Alibali, 2005; Richland, Stigler, & Holyoak, 2012). One might nat-
urally infer from this association that reliance on such automatic
mechanisms is itself a barrier to understanding, to be removed
by appropriate instruction.

An alternative attitude, however, is that automatization of the
processes of encoding and evaluating arithmetic expressions is
desirable and should be encouraged (Goldstone et al., 2008,
2010; Kellman et al., 2010; Kellman & Massey, 2013). Furthermore,
such automatization need not be viewed as an alternative to con-
ceptual understanding. Instead, perceptual and procedural autom-
atization can reduce the cognitive effort required to implement
formal principles, thereby facilitating performance consistent with
such principles. A few recent studies have tested curricular inter-
ventions designed to achieve such goals (Kellman et al., 2010;
Ottmar, Landy, & Goldstone, 2012; Ottmar, Weitnauer, Landy, &
Goldstone, 2015). Kellman et al. (2010), for example, applied per-
ceptual learning principles to instruction in the relations between
alternate representations (e.g. graphs, equations) of linear func-
tions. Participants performed a representation matching task
under time pressure, completing a large number of trials in a rela-
tively short time. Strikingly, the test intervention led to better per-
formance on a representation translation task, relative to a control
condition that received direct practice on that task. As this study
illustrates, interventions aimed at fostering development of auto-
matic perceptual and procedural routines may place greater
emphasis on repeated practice, perhaps under time pressure, while
explicit instruction and discussion, an important component of
Kirshner and Awtry’s (2004) proposal, may play a smaller role in
such interventions.

The results of the present study are in some respects consistent
with both of the attitudes described above. On the one hand, the
findings suggest that students may develop automatic perceptual
and procedural routines over time even if not deliberately trained
to do so. It may be impossible to prevent this process, but possible
to guide it so that students acquire routines that more closely
approximate formally correct procedures. On the other hand, the
findings also suggest that pre-existing constraints of these percep-
tual and procedural mechanisms can be a systematic source of
error. Emphasizing the importance of syntactic, rather than per-
ceptual or procedural, constraints may be all the more important
in this context. We suspect that this difference of opinion will be
difficult to resolve entirely without a complete theoretical account,
not only of the mechanisms underlying human processing of sym-
bolic expressions, but also of the processes underlying the develop-
ment of those mechanisms. It is hoped that the present findings
will contribute to the eventual development of such an account.

A final implication for education regards spacing between sym-
bols. Regardless of whether reliance on perceptual grouping is
encouraged or discouraged, the fact that students do rely on it
and that such reliance may even increase with age suggests that
instructors should be cognizant of the potential influence of sym-
bol spacing on students’ learning and performance. Specifically,
students may be confused by arithmetic expressions in which
spacing is inconsistent with syntactic structure. On the one hand,

instructors should take care not to produce such expressions when
demonstrating for students. On the other hand, students them-
selves may inadvertently introduce spacing/structure inconsis-
tency when writing arithmetic expressions and thereby create
unnecessary obstacles to their own practice and learning. This
problem may be particularly common or serious for students with
motor difficulties. Instructors could potentially alleviate such prob-
lems by monitoring students’ writing and correcting inconsistent
spacing when it does occur.
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Appendix A

The algorithm underlying Math Garden maintains ratings of
user ability 6; and of problem difficulty g; for each of the users
and problems in its database. These ratings are updated each time
a user attempts to solve a problem. The ratings are also used to
select which problem will be presented next to a given user, with
the goal that users should receive problems that are neither too
easy nor too difficult.

Central to the calculation of 6; and f; and also to problem selec-
tion is Math Garden’s system for scoring responses. Responses are
scored according to Eq. (1):

5— (2x,»jf1()j(dfrt,-j) a

Here S; denotes the score given to the response by user j to
problem i, x;; denotes the accuracy of the response (1 if correct, 0
if incorrect), d denotes the time allowed for a response, and rt;
denotes the actual response time. Thus, S; is 1 (—1) for a correct
(incorrect) response given immediately, 0.8 (—0.8) for a correct
(incorrect) response given after 20% of the allowed time has
elapsed, and so on. With this scoring system, the expected score
for user j on problem i is given by Eq. (2) (Maris & van der Maas,
2012):

e2(0;—Bi) +1 1
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Again, 0; and f; denote the present ratings of user ability and prob-
lem difficulty, respectively.

New users’ ability ratings 0; are initialized based on their age,
while problem difficulty g; ratings are initialized based on esti-
mated difficulty relative to other problems. After a given user
responds to a given problem, the values of 6; and f; are then
updated using a method invented by Elo (1978), in which the
expected result (Eq. (2)) is compared to the actual result (Eq.
(1)). This method is formalized in Egs. (3) and (4):

0 = 0; + K;(Sy — E(Sy)) )

Bi = Bi + Ki(E(Sy) — i) (4)
Here f)j and p; denote the updated ratings of user ability and prob-
lem difficulty, respectively. The terms K; and K; determine the rate
at which adjustment takes place, and themselves depend on esti-
mates of the uncertainty of the current ratings of user ability and
problem difficulty. The calculation of these terms is detailed in
Klinkenberg et al. (2011). The effect of Egs. (3) and (4) is that scores
higher than expected lead to increases in ratings of user ability and
decreases in ratings of problem difficulty, while scores lower than
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expected lead to the opposite changes. Note that the same set of
problem difficulty ratings is shared among all users, and similarly,
the same set of all user ability ratings is shared among all problems.

When it is time for a new problem to be presented to a user,
current ratings of that user’s ability and the difficulty of all prob-
lems are used to select a new problem for which the given user
is estimated to have about a 75% probability of answering cor-
rectly.” The estimated probability of a correct answer depends on
user ability and problem difficulty ratings via a logistic function, as
described in Eq. (5) (Klinkenberg et al., 2011):

eli=hi

P(xj) = T1ev (5)
To obtain a problem for which a given user has approximately a 75%
chance of answering correctly, the new item is selected whose dif-
ficulty rating is nearest to j3;, as determined by Eqs. (6) and (7). The
20 problems most recently presented to the same user are excluded

from this selection.

P ~ N(0.75,0.1) (6)

B =0;+1n (%) (7)

Eq. (6) says that probability P is drawn from a normal distribution
with mean 0.75 and standard deviation 0.1. Eq. (7) says that the tar-
get difficulty rating of the new problem minus the user ability rat-
ing is an inverse logistic function of P. Thus, according to Eq. (5), Pis
the probability of a correct response to the new problem.

Appendix B

The problem difficulty ratings obtained in the study would only
be meaningful if they had converged to relatively stable values by
the end of data collection. The general ability of the Math Garden
algorithm to converge on stable values was shown by
Klinkenberg et al. (2011). To check whether such stability had been
achieved in the present study, a simple linear regression was per-
formed to predict final difficulty ratings using difficulty ratings
obtained, for each problem, at the beginning of the last 200 trials
involving that problem. The regression was significant, F(1, 306)
=7300, p <.001, adjusted R? = .960. The coefficient of earlier diffi-
culty rating was near unity (1.015), while the model intercept
was near zero (—0.034), indicating that the earlier difficulty ratings
were nearly identical to the final difficulty ratings. Thus, difficulty
ratings were highly stable over the last 200 trials for each problem.

It is important to establish not only that difficulty ratings were
stable at the end of the study, but also that they changed substan-
tially earlier in the study. Otherwise, the final difficulty ratings
might simply reflect their initial values. To assess this possibility,
two additional analyses were conducted. First, problems’ difficulty
ratings after their first 200 trials were regressed against their initial
difficulty ratings at the beginning of the study. This regression was
significant, F(1,306) =108, p <.001, R?> =.259, but the amount of
variance explained (25.9%) was substantially less than in the previ-
ous model (96.0%). Also, the coefficient of initial difficulty rating
was not near unity (0.312), nor was the intercept near zero
(4.87), indicating that difficulty ratings changed substantially over
the first 200 trials, unlike the last 200 trials. As a second test, the

5 While selecting problems with a target of 50% accuracy would yield more
information for purposes of calculating user ability and problem difficulty ratings,
75% was preferred as a target in order to avoid discouraging users with low success
rates. Math Garden’s incorporation of response time into its scoring system allows
reliable estimates of player ability levels despite this relatively high target accuracy.
Math Garden users may elect to solve easier problems, in which case the target
accuracy is set at 90%, or harder problems, in which case it is set at 60%.

final difficulty ratings were regressed separately against initial rat-
ings and ratings after the first 200 trials. Both regressions were sig-
nificant, F(1,306)=90.5, p<.001, adjusted R?>=.226 for the
regression using initial ratings and F(1,306)=539, p<.001,
adjusted R?=.637 for the regression using ratings after the first
200 trials. However, the amount of variance explained (22.6% for
initial difficulty ratings, 63.7% for ratings after the first 200 trials)
was substantially less than that explained by regression against
ratings at the beginning of the last 200 trials (96.0%). Thus, final
difficulty ratings were much better predicted by difficulty ratings
observed late in the study than by initial or early difficulty ratings.
In sum, the stability observed at the end of the study was not a
result of ratings adjusting slowly or not at all.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cognition.2016.
01.004.
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